地质力学学报  2019, Vol. 25 Issue (1): 125-138
引用本文
张琪琪, 张拴宏. 华北地块北缘泥盆纪岩浆活动及其构造背景[J]. 地质力学学报, 2019, 25(1): 125-138.
ZHANG Qiqi, ZHANG Shuanhong. DEVONIAN MAGMATISM IN THE NORTHERN MARGIN OF THE NORTH CHINA BLOCK AND ITS TECTONIC SETTING[J]. Journal of Geomechanics, 2019, 25(1): 125-138.
华北地块北缘泥盆纪岩浆活动及其构造背景
张琪琪1,2 , 张拴宏1,2     
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 自然资源部古地磁与古构造重建重点实验室, 北京 100081
摘要:晚古生代—早中生代岩浆岩广泛分布在华北地块北缘,构成了沿华北地块北缘呈近东—西向分布的上千公里的岩浆岩带。泥盆纪岩浆岩作为其中的组成部分,虽然分布范围不及石炭—二叠纪岩浆岩广泛,但近十多年来随着研究工作的深入,越来越多的泥盆纪岩浆岩被发现,其构造背景及意义也逐渐引起重视。对华北地块北缘近年来发现的泥盆纪岩浆活动进行总结分析表明,泥盆纪岩浆活动时限在400~360 Ma左右,其中碱性侵入岩和基性—超基性侵入岩时代主要集中在400~380 Ma之间,沿华北地块北缘自东向西均有分布;火山岩则主要集中在400 Ma和360 Ma,主要分布在华北北缘东段的赤峰地区。泥盆纪侵入岩在岩石组合上以碱性杂岩及碱性花岗岩为主,其次为二长闪长岩、基性—超基性杂岩。泥盆纪火山岩则以变质流纹质火山岩—次火山岩—火山碎屑岩及变质玄武安山岩、玄武岩(斜长角闪岩)为主,总体上具有双峰式岩石组合特征。综合研究该地区构造演化历史及泥盆纪岩石组合、弱构造变形特征、岩石地球化学与同位素地球化学组成等,认为泥盆纪岩浆活动的形成与白乃庙岛弧和华北地块在晚志留世发生弧—陆碰撞后的伸展背景有关。华北北缘泥盆纪岩浆岩带的形成对于认识古生代期间地壳增生过程、方式及古亚洲洋最终闭合时间有重要科学意义。
关键词泥盆纪    华北地块北缘    弧-陆碰撞    伸展型岩浆活动    地壳增生    
DOI10.12090/j.issn.1006-6616.2019.25.01.012     文章编号:1006-6616(2019)01-0125-14
DEVONIAN MAGMATISM IN THE NORTHERN MARGIN OF THE NORTH CHINA BLOCK AND ITS TECTONIC SETTING
ZHANG Qiqi1,2 , ZHANG Shuanhong1,2     
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China
Abstract: Late Paleozoic-early Mesozoic magmatic rocks are widespread along the northern margin of the North China Block and constitute an east-west belt that is about one thousand kilometers long. As a part of the late Paleozoic-early Mesozoic magmatic belt, the distribution of the Devonian magmatic rocks is not common as that of the Carboniferous-Permian magmatic rocks. However, in recent years, more and more Devonian magmatic rocks have been identified and their geological background and tectonic implications have been much more attractive than before. Our research in combined with previously published results indicate that the Devonian magantism along the northern North China Block occurred mainly during 400~360 Ma. Among them the Devonian alkaline intrusive rocks and mafic-ultramafic intrusive rocks are distributed along the northern North China Block from Guyang to Chifeng areas and their emplacement occurred mainly during 400~380 Ma. The Devonian volcanic rocks are mainly distributed in Chifeng area in the eastern part of the northern North China Block and their eruption occurred during two peaks at 400 Ma and 360 Ma, respectively. The Devonian intrusive rocks consist mainly of monzonite, syenite and alkaline granite with minor monzodiorite and mafic-ultramafic rocks. The Devonian volcanic rocks are composed mainly of metamorphic rhyolitic rocks and metamorphic basaltic andesite, metabasalt (plagioclase amphibolite) and exhibit characteristics of bimodal volcanic rocks. Rock association, weak deformation fabrics, and geochemical and isotopic characteristics of the Devonian magmatic rocks, as well as the tectonic evolution history suggest that formation of the Devonian magmatic rocks in the northern North China Block is related to post-collisional extension after arc-continental collision between the Bainaimiao arc and the northern North China Craton during the latest Silurian. The Devonian magmatic rocks identified from the northern North China Block in recent years are of great significance to better understand the continental crustal growth of the northern margin of North China Block during late Paleozoic period and timing for final closure of the Paleo-Asian ocean.
Key words: Devonian    northern margin of the North China Block    arc-continental collision    extension-related magmatism    continental crustal growth    
0 引言

华北克拉通之所以成为国内外长期以来关注和研究的热点地区,一方面是由于其是世界上最古老的克拉通之一,保存有世界上罕见的大于38亿年的古老陆壳记录,自古元古代经多块体拼合之后进入稳定的克拉通演化阶段,并保持了长达10亿年的稳定[1~3],另一方面是由于它在中—新生代期间发生了以岩石圈减薄为主要特征的华北克拉通破坏[4~6]

华北地块北缘(包括了华北克拉通北缘及其北侧的白乃庙岛弧岩带)毗邻中亚造山带东段(兴蒙造山带),该带位于西伯利亚、华北和塔里木地块之间,被认为是显生宙以来全球规模最大的增生型造山带[7~9]。关于华北地块北缘的构造背景及其与中亚造山带东段(兴蒙造山带)及其北侧古亚洲构造演化的关系一直存在较大的争议,这种争议主要集中在三个方面:①晚古生代期间华北地块北缘大陆边缘的性质,即为被动大陆边缘[10],还是活动大陆边缘[7];②古亚洲洋最终闭合即西伯利亚与华北地块的碰撞拼合时间,目前主要存在两种不同的观点,其一是泥盆纪碰撞拼合[11~13],其二是二叠纪碰撞拼合[7~9, 14~16];③华北地块与南蒙古复合地体最终碰撞拼合的位置,大多数学者认为在索伦—林西—长春—延吉一线[7~9],但也有少数学者认为在贺根山一带[17]。近十多年来,大量的研究工作发现在内蒙古隆起(“内蒙地轴”)内以往所认为的太古宙—古元古代结晶基底岩系内,分布有大量的晚古生代侵入岩,构成了沿华北地块北缘呈近东—西向分布的上千公里的巨型岩浆岩带。这些岩浆活动大致可以分为泥盆纪(400~360 Ma)、早石炭世晚期—中二叠世(330~265 Ma)、二叠纪末—三叠纪(250~200 Ma)3个时期[18]。其中早石炭世晚期—中二叠世和二叠纪末—三叠纪时期岩浆岩分布广泛,且出露岩体较多,近年来诸多研究者对这两个时期的岩浆活动做了大量深入细致的研究工作,对于其岩浆活动的特征及构造背景有了较为明确的认识。而泥盆纪岩浆岩的分布相对局限,但近十多年来随着研究及调查工作的不断深入,越来越多的泥盆纪岩浆岩被发现,其构造背景及意义也逐渐引起大家的重视。在构造位置上,大多数泥盆纪岩浆岩分布在华北克拉通北缘断裂(白云鄂博—多伦—赤峰—开原断裂)以南或附近,少量位于华北克拉通北缘断裂以北的白乃庙岛弧岩带上。通过对华北地块北缘近年来识别出的泥盆纪岩浆岩的年代学、岩石学、地球化学、构造变形特征及其空间分布等资料的综合分析研究,来探讨该区泥盆纪岩浆活动的构造背景,进而对认识华北北缘晚古生代期间地壳增生过程及古亚洲洋最终闭合时间提供一些制约。

1 泥盆纪岩浆岩的时代及空间分布 1.1 泥盆纪侵入岩

泥盆纪侵入岩分布范围虽然不大,但在华北地块北缘自西向东均有分布(图 1),时代主要集中在早—中泥盆世(图 2表 1)。华北地块北缘典型的泥盆纪侵入岩主要有以下八种岩体。

图 1 华北地块泥盆纪岩浆岩分布图(据文献[18]修改) Fig. 1 Geological sketch map showing distribution of the Devonian magmatic rocks in the northern margin of the North China Block(Modified after reference [18])

图 2 华北地块北缘泥盆纪侵入岩锆石U-Pb年龄分布直方图 Fig. 2 Histogram of zircon U-Pb ages of the Devonian intrusive rocks in the northern margin of the North China Block

表 1 华北地块北缘泥盆纪岩浆岩锆石U-Pb年龄汇总表 Table 1 Summary of zircon U-Pb ages of the Devonian magmatic rocks in the northern margin of the North China Block

(1) 固阳东部白菜沟碱性杂岩体,岩性主要包括二长岩、二长花岗岩和石英正长岩,Zhang等[19]对该岩体的LA-ICP-MS U-Pb分析结果表明,白菜沟二长岩锆石LA-ICP-MS U-Pb年龄为395±3 Ma,二长花岗岩锆石LA-ICP-MS U-Pb年龄分别为399±3 Ma和402±2 Ma。

(2) 固阳东部高家村碱性岩体,岩体岩性较为单一,为角闪正长岩,王惠初等[20]测得角闪正长岩锆石TIMS U-Pb年龄为390±5 Ma,SHRIMP U-Pb年龄为399±7 Ma;Zhang等[19]测得角闪正长岩锆石LA-ICP-MS U-Pb年龄为396±2 Ma。

(3) 集宁三道沟碱性杂岩体,岩性主要为辉石正长岩、石英正长岩及少量二长岩,局部存在辉长岩及辉石岩,石英正长岩及辉石正长岩锆石LA-ICP-MS U-Pb年龄分别为409±2 Ma和408±4 Ma[21],辉石正长岩和二长岩锆石LA-ICP-MS U-Pb年龄分别为401±2 Ma和401±1 Ma[19],同时Zhang等[19]测得与碱性岩共同出露的辉长岩及辉石岩锆石LA-ICP-MS U-Pb年龄分别为399±1 Ma和398±2 Ma。

(4) 乌兰哈达碱性岩体,主要岩性为石英二长岩,岩体中也出露有少量辉长岩及辉石岩,岩体内石英二长岩锆石SHRIMP U-Pb年龄为382±4 Ma[22],二长岩锆石LA-ICP-MS U-Pb年龄分别为381±2 Ma和379±1 Ma[19],与碱性岩共同出露的辉长岩及辉石岩锆石LA-ICP-MS U-Pb年龄分别为377±1 Ma和381±5 Ma[19]

(5) 水泉沟碱性杂岩体,岩性主要为正长岩及二长岩,侵位时代在390 Ma左右[23]

(6) 冀北承德大庙孤山二长闪长岩,其锆石SHRIMP U-Pb年龄为390±5 Ma[24]

(7) 冀北地区沿大庙断裂带红石砬、二道沟、下哈叭沁及龙王庙等地出露多个基性—超基性杂岩体[25~27],其中倪志耀测得下哈叭沁异剥钙榴岩锆石SHRIMP U-Pb年龄为396±5 Ma[26],Zhang等[25]测得下哈叭沁异剥钙榴岩锆石SHRIMP U-Pb年龄为392±5 Ma,这两个年龄在误差范围内是一致的。Zhang等[25]测得红石砬地区辉石岩的SHRIMP U-Pb以及LA-ICP-MS U-Pb年龄分别为381±7 Ma、393±4 Ma、388±2 Ma,二道沟地区角闪石岩SHRIMP U-Pb年龄为395±11 Ma。大庙龙王庙地区角闪岩的LA-ICP-MS U-Pb年龄为382±10 Ma,单斜辉石岩的LA-ICP-MS U-Pb年龄为399±4 Ma[27]

(8) 内蒙古赤峰地区泥盆纪碱性花岗岩体,包括赤峰红山公园钾长花岗岩,其SHRIMP U-Pb年龄为387±4 Ma[28]、LA-ICP-MS U-Pb年龄为388±3 Ma[19];红庙子正长花岗岩,其LA-ICP-MS U-Pb年龄为392±2 Ma[29]和391±4 Ma[19];鸡冠山花岗斑岩,其LA-ICP-MS U-Pb年龄为377±2 Ma[29]和393±3 Ma[19];车户沟正长花岗岩LA-ICP-MS和SIMS U-Pb年龄分别为376±3 Ma[30]和373±6 Ma[31],二长花岗岩SIMS U-Pb年龄为385±4 Ma[31]

1.2 泥盆纪火山岩

泥盆纪火山岩是近年来在华北地块北缘地区新识别出来的火山岩地层单元之一,主要分布在赤峰东部及东北部地区(图 1),时代从早泥盆世到晚泥盆世均有分布(表 1)。泥盆纪火山岩主要包括赤峰东部解放营子八当山组变质流纹岩、变质玄武岩(斜长角闪岩),莲花山、敖汉旗朝吐沟等地的朝吐沟组变质流纹斑岩、流纹质熔结凝灰岩、变质玄武岩及敖汉旗裴家店及奈曼旗青龙山镇等地的前坤头沟组变质玄武岩、玄武安山岩和流纹岩。

1.2.1 解放营子八当山组变质流纹岩及变质基性火山岩(斜长角闪岩)

八当山组主要分布于赤峰东部解放营子—翁牛特旗一带,岩性主要为强片理化流纹岩夹少量板岩、灰岩、酸性凝灰岩及安山岩等,厚度约1000 m。该套地层的时代以前认为是中—晚志留世[32]。刘建峰等[33]测得解放营子八当山组凝灰岩锆石LA-ICP-MS U-Pb年龄为404±1 Ma,说明其形成于早泥盆世,而非此前所认为的中—晚志留世。经野外调查结果表明,在赤峰解放营子一带还有较多的早泥盆世斜长角闪岩,可能为玄武岩等基性火山岩变质产物。这些变质基性火山岩与变质流纹岩一起构成了一套双峰式岩石组合。

1.2.2 赤峰东部朝吐沟组、前坤头沟组火山岩

朝吐沟组创建于赤峰敖汉旗朝吐沟地区,为绢云石英片岩、片理化中酸性熔岩、变质玄武岩及酸性凝灰岩等为主的一套火山—沉积地层,剖面上可见变质玄武岩与变质流纹岩交互产出,其时代早期被认为是早石炭世[32, 34],但一直缺少同位素年代学及古生物学证据。前坤头沟组火山—沉积地层主要出露在敖汉旗裴家店及奈曼旗青龙山镇一带,岩性主要为灰岩、板岩及变质玄武岩、玄武安山岩和流纹岩,时代被定为早泥盆世[35~36]。由于敖汉旗朝吐沟地区该组火山岩主要产状及构造线与下石炭统明显不同,而与其东毗邻的下泥盆统前坤头沟组相接近,因此有学者曾经推测朝吐沟组地层的时代应为中—晚泥盆世[37],但并未被后来的地层划分所采纳[34]。叶浩等[38]获得的莲花山地区流纹质熔结凝灰岩的锆石LA-ICP-MS U-Pb年龄为364±2 Ma和366±2 Ma,孙立新等[39]获得的朝吐沟地区变质流纹岩的锆石LA-ICP-MS U-Pb年龄为360±1 Ma和359±1 Ma,表明朝吐沟组火山岩主体形成于泥盆纪晚期,而不是之前学者所认为的早石炭世。前坤头沟组火山岩目前未获得可靠的年龄,但根据地层接触关系等推测其形成于泥盆纪。

2 泥盆纪岩石组合、地球化学特征及成因分析 2.1 岩石组合

泥盆纪侵入岩在岩石组合上以碱性杂岩(张家口水泉沟、大青山北缘高家村、集宁三道沟、乌兰哈达)和碱性花岗岩(赤峰车户沟、红山公园、红庙子、鸡冠山)为主,其次为二长闪长岩(承德大庙孤山)、基性—超基性杂岩(红石砬、二道沟、下哈叭沁以及龙王庙等地)。泥盆纪火山岩则以变质流纹质火山岩—次火山岩—火山碎屑岩及变质玄武岩和玄武安山岩为主(赤峰解放营子、莲花山、朝吐沟等地),总体上呈双峰式岩石组合,在朝吐沟及解放营子等地剖面上均可见变质玄武岩与变质流纹岩交互产出。

2.2 岩石化学及地球化学特征

在地球化学组成上,泥盆纪碱性岩总体上以高碱(K2O+Na2O)、碱性—高钾钙碱性及准铝质或弱过铝质为特征[19, 21~22, 24, 28~29, 40~41]。在球粒陨石标准化稀土配分曲线上,白菜沟二长岩—正长岩—二长花岗岩、高家村正长岩、三道沟二长岩—正长岩、乌兰哈达二长岩—正长岩、水泉沟正长岩—二长岩、孤山二长闪长岩及车户沟正长花岗岩和二长花岗岩均表现为无Eu异常或弱正Eu异常,而三道沟和乌兰哈达岩体中与正长岩—二长岩共同出露的辉长岩、辉石岩以及赤峰地区的正长花岗岩和正长花岗斑岩存在明显的负Eu异常[19]。在原始地幔标准化微量元素蛛网图上,白菜沟二长岩—正长岩—二长花岗岩、高家村正长岩、三道沟二长岩—正长岩、乌兰哈达二长岩—正长岩、水泉沟正长岩—二长岩、孤山二长闪长岩及车户沟正长花岗岩和二长花岗岩表现为Ba、K及Sr等强烈富集,而Rb、Th、U、Nb、Ta、P、Zr、Hf及Ti等则强烈亏损,三道沟和乌兰哈达岩体中与正长岩—二长岩共同出露的辉长岩、辉石岩则表现为富集Th、U、La、Ce及Nd,亏损Ba、K、Nb、Ta、Sr、Zr、Hf和Ti[19]。赤峰地区的正长花岗岩和正长花岗斑岩表现为Rb、Th、K、La、Ce及Nd等强烈富集,而Ba、U、Nb、Ta、Sr、P、及Ti等则强烈亏损。孤山二长闪长岩无论是在常量、微量与稀土元素还是同位素组成方面均可与水泉沟碱性杂岩相对比,表明二者有相似的源区及成因[24],但二者侵位深度却有明显差异,水泉沟碱性杂岩的侵位深度明显浅于孤山二长闪岩体[42]

赤峰解放营子泥盆纪八当山组火山岩以富硅、碱、铝,贫铁、镁、钙、钛及过铝质为特征,其球粒陨石标准化稀土分配曲线表现为明显的轻稀土富集及负Eu异常,富集大离子亲石元素、亏损高场强元素[33]。敖汉旗朝吐沟组变质流纹岩以高硅,低钛,富钾,贫镁及过铝质为特征,其球粒陨石标准化稀土分配曲线表现为明显的轻稀土富集及负Eu异常,在原始地幔标准化微量元素蛛网图上,Rb、Th、U、K、La、Ce、Zr、Hf等明显富集,而Nb、Ta、Sr、P及Ti等则相对亏损[43]。敖汉旗朝吐沟组变质玄武岩(玄武安山岩)主体为亚碱性系列,轻稀土元素弱富集而重稀土元素略亏损,大离子亲石元素和高场强元素富集[43]

2.3 岩石成因分析

虽然下地壳部分熔融可以形成部分碱性岩[44~46],但大部分碱性岩均起源于岩石圈地幔的部分熔融或者地幔起源的碱性岩浆与地壳物质的相互作用[47~49]

华北地块北缘红石砬、二道沟及下哈叭沁等地大多数中泥盆世基性—超基性岩具有较低的87Sr/86Sr初始比值(0.705左右)及相对较高的εNd(T)值(-6.3~-1.5)和变化范围较大的εHf(T)值(-11.5~5.5)(图 3图 4表 2表 3),表明这些岩石可能起源于轻度富集的岩石圈地幔的熔融[25]。水泉沟碱性杂岩与孤山二长闪长岩地球化学特征相似,以较低的SiO2(< 63%)、高碱、低87Sr/86Sr初始比值(0.705左右)、低εNd(T)值(-13.2~-6.2)及εHf(T)值(-12.0~-5.8)为特征(图 3图 4表 2表 3),表明这些岩石主要起源于富集的岩石圈地幔的熔融,但有古老下地壳物质的混染[24, 40]

图 3 华北地块北缘泥盆纪岩浆岩Nd同位素组成(数据来源于文献[19~20, 21~22, 24~25, 40~41, 43]) Fig. 3 Nd isotopic compositions of the Devonian magmatic rocks in the northern margin of the North China Block (Data are from references [19~20, 21~22, 24~25, 40~41, 43])

图 4 华北地块北缘泥盆纪岩浆岩Hf同位素组成(数据来源于文献[19, 21~22, 24~25, 27~28, 33, 43]) Fig. 4 Hf isotopic compositions of the Devonian magmatic rocks in the northern margin of the North China Block (Data are from references [19, 21~22, 24~25, 27~28, 33, 43])

表 2 华北地块北缘泥盆纪岩浆岩Sr-Nd同位素汇总表 Table 2 Summary of Sr-Nd isotopes of the Devonian magmatic rocks in the northern margin of the North China Block

表 3 华北地块北缘泥盆纪岩浆岩Hf同位素汇总表 Table 3 Summary of Hf isotopes of the Devonian magmatic rocks in the northern margin of the North China Block

白菜沟、高家村、三道沟和乌兰哈达碱性岩具有较低的87Sr/86Sr初始比值(0.705~0.707)、负的εNd(T)及εHf(T)值(εNd(T)=-18.9~-9.3;εHf(T)=-34.1~-12.0)及古老的Nd同位素模式年龄(3.18~1.36 Ga)及Hf同位素模式年龄(2.34~1.54 Ga)(图 3图 4表 2表 3),被认为是主要来源于基性下地壳的部分熔融[20, 22],或者是来源于被交代的岩石圈地幔局部熔融形成的富碱基性岩浆与下地壳相互作用的产物[21]。近期Zhang等[19]在三道沟及乌兰哈达碱性岩体中新发现了与碱性岩(正长岩和二长岩)近于同期形成的基性—超基性岩(辉石岩及辉长岩),这些基性—超基性岩具有负εNd(T)值(-11.8~-10.5)和老的Nd模式年龄(TDM=2.21~1.70 Ga),负εHf(T)值(-24.4~-15.1)和老的Hf模式年龄(TDM=1.97~1.60 Ga,TDMC=2.92~2.35 Ga)(图 3图 4表 2表 3),同位素组成表明华北地块北缘泥盆纪碱性岩体中这些基性—超基性岩起源于华北克拉通下部富集岩石圈地幔的部分熔融[19]。尽管以上岩体中碱性岩εNd(T)及εHf(T)值变化范围较大,但其中与基性—超基性岩共同出露的一些碱性岩在全岩Sr-Nd同位素和锆石Hf同位素组成上与基性—超基性岩具有极大的相似性,结合εNd(T)值随着SiO2含量的增加和MgO含量的减少在早期阶段无变化到晚期阶段表现为明显的负相关这一特征[19],表明两者可能具有相同的物质来源,在成岩过程中母岩浆经历了分离结晶和同化混染作用。

车户沟花岗岩体具有高的87Sr/86Sr初始比值(0.708~0.711)、异常低的εNd(T)值(-20左右)和εHf(T)值(-44.4~-20.5)及非常古老的Nd同位素模式年龄(2.87~2.05 Ga)和Hf同位素模式年龄(TDM=2.71~1.81 Ga,TDMC=4.12~2.66 Ga)(图 3图 4表 2表 3)[19, 41],同时这些岩体普遍具有较高的SiO2(69.04~75.25%)并且缺少伴生的基性岩,因此这些花岗质岩石应该起源于古老下地壳物质的重融。虽然一些学者认为赤峰地区红山、红庙子和鸡冠山正长花岗岩和正长花岗斑岩也是华北克拉通古老下地壳熔融的产物[28~29],但与车户沟花岗岩体相比,其具有相对较高εHf(T)值(-17.3~-8.2)和较为年轻的Hf同位素模式年龄(TDM=1.74~1.35 Ga,TDMC=2.48~1.91 Ga)(图 4表 3),因此Zhang等[19]提出赤峰地区红山、红庙子和鸡冠山岩体中正长花岗岩和正长花岗斑岩是富集的岩石圈地幔母岩浆极度分离结晶的产物,而非华北克拉通古老下地壳熔融的产物。

赤峰解放营子八当山组火山岩具有低的εHf(T)值(-22.0~-16.4)和古老的Hf两阶段模式年龄(2.78~2.43 Ga)(图 4表 3),被认为是起源于华北克拉通古老地壳物质的部分熔融[33]。敖汉旗朝吐沟组双峰式火山岩具有不同的岩浆起源,其中玄武岩具有低的87Sr/86Sr初始比值(0.705~0.707)、高的正εNd(T)值(0.5~4.9)和年轻的Nd模式年龄(1.09~0.94 Ga)(图 3表 2),被认为是来源于遭受地壳混染的亏损地幔[43];流纹岩具有高的87Sr/86Sr初始比值(0.714~0.740)、高的εNd(T)值(-1.8~2.5)和年轻的Nd模式年龄(1.15~0.84 Ga)以及较高的εHf(T)值(-1.9~5.7)和年轻的Hf模式年龄(1.07~0.77 Ga)(图 3图 4表 2表 3),被认为是来源于新元古代新生的年轻陆壳[43]。解放营子八当山组火山岩和敖汉旗朝吐沟组火山岩虽同属于泥盆纪时期的产物,然而两者的εHf(T)值和Hf模式年龄截然不同(图 4表 3),Hf同位素特征的差异暗示它们的岩浆起源不同,岩浆源区的差异则说明华北克拉通北缘边界可能位于两者之间。

3 泥盆纪华北北缘构造背景分析

关于西伯利亚与华北地块碰撞的时限,不同学者基于不同的研究对象得出了截然不同的结论,目前主要存在两种认识:一种是泥盆纪碰撞拼合[11~13],另一种是二叠纪碰撞拼合[7~9, 14~16]

认为西伯利亚与华北地块在泥盆纪碰撞拼合(古亚洲洋闭合)的关键性证据是在苏尼特左旗和锡林浩特地区发现了泥盆纪类磨拉石沉积及其下伏地层之间的不整合,以及发育在该区的晚奥陶世岛弧闪长岩带和晚泥盆世同碰撞花岗岩带[11~12]。然而,对于苏尼特左旗和锡林浩特地区泥盆纪类磨拉石沉积及其下伏地质体的不整合,以及该区发育的岛弧闪长岩带和同碰撞花岗岩带,李锦轶等[14]认为这可能是局部弧—陆碰撞的结果,并不是古亚洲洋闭合的记录,因为除此地区外,在中亚造山带东南段的其他地区并没有发现类似的地质现象。

此外,岩体的构造变形,特别是同侵位期构造变形记录了岩体侵位过程中区域构造变形的重要信息,对于认识岩体侵位机制及形成的构造背景具有重要意义[50~52]。与华北地块北缘晚石炭世—中二叠世侵入岩普遍发育同侵位期构造变形特征明显[53~54]不同,华北地块北缘泥盆纪岩体普遍没有明显的同侵位期变形,同岩浆期面理及线理均不发育,反映二者形成的构造背景完全不同。泥盆纪岩体弱变形或无变形的构造特征指示这些岩体侵位于伸展构造背景。

华北地块北缘泥盆纪岩浆岩岩石组合、构造变形及地球化学特征方面均显示出伸展构造背景的岩浆作用特征,但对于其形成的构造背景及动力学机制却存在不同看法。Zhang等[25]提出华北地块北缘泥盆纪岩浆岩的形成与晚志留世华北地块北缘和白乃庙岛弧岩带弧—陆碰撞后伸展背景有关,也得到了后续大多数学者研究结果的支持[22, 29, 38~39]。而Zhang等[21]则认为泥盆纪岩浆活动的形成与古亚洲洋向南俯冲过程中俯冲板片断离引起的伸展背景有关。

要全面认识华北地块北缘近年来发现的早泥盆世末期—晚泥盆世岩浆活动的构造背景则需要对华北地块北缘早古生代大陆边缘的性质及其演变做深入分析。华北北部的大陆边缘是在中元古代裂解基础上发展起来的[55~56]。尽管有学者认为华北地块北缘在早古生代期间可能为活动大陆边缘[7~8],白乃庙弧可能是发育在华北北缘的陆缘弧[8],但近年来的研究结果显示,华北北缘早古生代侵入岩及火山岩仅出露在白乃庙岛弧岩带上(即华北克拉通北缘断裂以北),以往所认为的位于华北克拉通北缘的早古生代岩体(如合教岩体[7, 57])侵位时代为太古宙—古元古代或晚石炭世—早二叠世,而不是早古生代,因此早古生代期间华北克拉通北缘一直保持了被动大陆边缘的特征,白乃庙岛弧岩带不是华北北缘陆缘弧,而是洋内岛弧,其演化历史及构造属性与华北克拉通北缘明显不同[56]

早寒武世—中志留世,在华北克拉通北缘北侧发育了白乃庙岛弧岩带[56, 58~60],该岛弧岩带从白云鄂博北部开始,经达茂旗北部、白乃庙、图林凯、解放营子北,向东可延伸到吉林南部四平一带,沿该岛弧岩带出露了大量的岛弧侵入岩(闪长岩、石英闪长岩、英云闪长岩及花岗闪长岩等),局部地区还发育有火山岩(安山岩及安山质熔结凝灰岩为主)[56]。对岛弧火山岩及侵入岩的锆石U-Pb定年结果表明[56, 58~60],白乃庙岛弧岩带开始于早寒武世(~520 Ma),结束于晚志留世(~420 Ma)。志留纪末期,白乃庙岛弧与华北克拉通北缘发生弧—陆碰撞,白乃庙岛弧增生拼贴在华北北缘之上[56]。内蒙古中部西别河组地层与下覆奥陶纪—志留纪岛弧火山沉积岩系之间的不整合可能与这一弧—陆碰撞过程有关[34, 59]。位于不整合面之上的西别河组为一套磨拉石或类磨拉石沉积[61~62],其沉积时代为晚志留世[34]或晚志留世末期—早泥盆世早期[61~63]。从早泥盆世开始,华北地块北缘可能进入弧—陆碰撞后伸展阶段。

通过对华北北缘早古生代陆缘性质及白乃庙岛弧岩带演化历史的综合分析,认为华北北缘泥盆纪岩浆活动的形成与志留纪末期白乃庙岛弧与华北克拉通北缘弧—陆碰撞后伸展背景有关。华北北缘这些与弧—陆碰撞后伸展有关的泥盆纪岩浆岩的形成对于认识华北北缘古生代期间地壳增生过程、方式及古亚洲洋最终闭合时间有重要科学意义。

4 结论

(1) 华北地块北缘泥盆纪岩浆活动时限在400~360 Ma之间,其中碱性侵入岩和基性—超基性侵入岩时代主要集中在400~380 Ma,而火山岩则主要集中在400 Ma和360 Ma。

(2) 泥盆纪侵入岩以碱性杂岩及碱性花岗岩为主,其次为二长闪长岩、基性—超基性杂岩;火山岩则以变质流纹质火山岩—次火山岩—火山碎屑岩及变质玄武岩和玄武安山岩为主,具双峰式岩石组合特征。泥盆纪碱性岩主要分布在固阳高家村、集宁三道沟和乌兰哈达、承德孤山、张家口水泉沟等地,而泥盆纪花岗岩及火山岩主要分布于赤峰东部及东北部地区。

(3) 泥盆纪岩浆岩岩石组合、构造变形及地球化学特征均反映出伸展构造背景特征,其形成与华北地块北部白乃庙岛弧与华北地块北缘在志留纪末发生弧—陆碰撞后的伸展作用有关。

参考文献/References
[1]
Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20(4): 339-342. DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[2]
Zhao G C, Sun M, Wilde S A, et al. Late archean to paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. DOI:10.1016/j.precamres.2004.10.002
[3]
Zhai M G. Cratonization and the Ancient North China continent:a summary and review[J]. Science China Earth Sciences, 2011, 54(8): 1110-1120. DOI:10.1007/s11430-011-4250-x
[4]
吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174.
WU Fuyuan, XU Yigang, GAO Shan, et al. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 2008, 24(6): 1145-1174. (in Chinese with English abstract)
[5]
徐义刚, 李洪颜, 庞崇进, 等. 论华北克拉通破坏的时限[J]. 科学通报, 2009, 54(14): 1974-1989.
XU Yigang, LI Hongyan, PANG Chongjin, et al. On the timing and duration of the destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(19): 3379-3396.
[6]
朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学:地球科学, 2012, 55(8): 1135-1159.
ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 55(10): 1565-1587.
[7]
王荃, 刘雪亚, 李锦轶. 中国华夏与安加拉古陆间的板块构造[M]. 北京: 北京大学出版社, 1991.
WANG Quan, LIU Xueya, LI Jinyi. Plate tectonics between cathaysia and angaraland in China[M]. Beijing: Peking University Press, 1991. (in Chinese)
[8]
Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1069.
[9]
李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4): 584-605.
LI Jinyi, ZHANG Jin, YANG Tiannan, et al. Crustal tectonic division and evolution of the southern part of the North Asian Orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 584-605. (in Chinese with English abstract)
[10]
Hsu K J, Wang Q, Hao J. Geologic evolution of the Neimonides:a working hypothesis[J]. Eclogae Geologicae Helvetiae, 1991, 84(1): 1-31.
[11]
唐克东. 中朝板块北侧褶皱带构造演化及成矿规律[M]. 北京: 北京大学出版社, 1992.
TANG Kedong. Tectonic evolution and minerogenetic regularities of the fold belt along the northern margins of Sino-Korean plate[M]. Beijing: Peking University Press, 1992. (in Chinese)
[12]
徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学(D辑), 1997, 40(3): 227-232.
XU Bei, CHEN Bin. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China plates in northern Inner Mongolia[J]. Science in China (Series D), 1997, 40(5): 463-469.
[13]
程胜东, 方俊钦, 赵盼, 等. 内蒙古西拉木伦河两岸志留-泥盆系碎屑锆石年龄及其构造意义[J]. 岩石学报, 2014, 30(7): 1909-1921.
CHENG Shengdong, FANG Junqin, ZHAO Pan, et al. Detrital zircon ages of the Silurian-Devonian clastic rocks in south and north banks of Xar Moron River, Inner Mongolia[J]. Acta Petrologica Sinica, 2014, 30(7): 1909-1921. (in Chinese with English abstract)
[14]
李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582.
LI Jinyi, GAO Liming, SUN Guihua, et al. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates[J]. Acta Petrologica Sinica, 2007, 23(3): 565-582. (in Chinese with English abstract)
[15]
李钢柱, 王玉净, 李成元, 等. 内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J]. 科学通报, 2017, 62(5): 400-406.
LI Gangzhu, WANG Yujing, LI Chengyuan, et al. Discovery of Early Permian radiolarian fauna in the Solon Obo ophiolite belt, Inner Mongolia and its geological significance[J]. Chinese Science Bulletin, 2017, 62(5): 400-406. (in Chinese with English abstract)
[16]
郭伟, 杨欣德, 张娟, 等. 内蒙古赤峰北部下二叠统于家北沟组碎屑沉积岩地球化学特征[J]. 地质力学学报, 2011, 17(3): 295-302.
GUO Wei, YANG Xinde, ZHANG Juan, et al. Geochemical characteristics of clastic sedimentary rocks from lower Permian Yujiabeigou Formation in northern Chifeng, Inner Mongolia[J]. Journal of Geomechanics, 2011, 17(3): 295-302. DOI:10.3969/j.issn.1006-6616.2011.03.009 (in Chinese with English abstract)
[17]
Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. DOI:10.1038/364299a0
[18]
张拴宏, 赵越, 刘健民, 等. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志, 2010, 29(6): 824-842.
ZHANG Shuanhong, ZHAO Yue, LIU Jianmin, et al. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block:a preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842. DOI:10.3969/j.issn.1000-6524.2010.06.017 (in Chinese with English abstract)
[19]
Zhang Q Q, Zhang S H, Zhao Y, et al. Devonian alkaline magmatic belt along the northern margin of the North China Block:petrogenesis and tectonic implications[J]. Lithos, 2018, 302~303: 496-518.
[20]
王惠初, 相振群, 赵凤清, 等. 内蒙古固阳东部碱性侵入岩:年代学、成因与地质意义[J]. 岩石学报, 2012, 28(9): 2843-2854.
WANG Huichu, XIANG Zhenqun, ZHAO Fengqing, et al. The alkaline plutons in eastern part of Guyang county, Inner Mongolia:geochronology, petrogenesis and tectonic implications[J]. Acta Petrologica Sinica, 2012, 28(9): 2843-2854. (in Chinese with English abstract)
[21]
Zhang X H, Zhang H F, Jiang N, et al. Early Devonian alkaline intrusive complex from the northern North China Craton:a petrological monitor of post-collisional tectonics[J]. Journal of the Geological Society, 2010, 167(4): 717-730. DOI:10.1144/0016-76492009-110
[22]
Huang D L, Hou Q Y. Devonian alkaline magmatism in the northern North China Craton:geochemistry, SHRIMP zircon U-Pb geochronology and Sr-Nd-Hf isotopes[J]. Geoscience Frontiers, 2017, 8(1): 171-181. DOI:10.1016/j.gsf.2016.02.006
[23]
罗镇宽, 苗来成, 关康, 等. 河北张家口水泉沟岩体SHRIMP年代学研究及其意义[J]. 地球化学, 2001, 30(2): 116-122.
LUO Zhenkuan, MIAO Laicheng, GUAN Kang, et al. SHRIMP chronological study of Shuiquangou intrusive body in Zhangjiakou area, Hebei province and its geochemical significance[J]. Geochimica, 2001, 30(2): 116-122. DOI:10.3321/j.issn:0379-1726.2001.02.002 (in Chinese with English abstract)
[24]
Zhang S H, Zhao Y, Song B, et al. Petrogenesis of the middle Devonian Gushan diorite pluton on the northern margin of the North China block and its tectonic implications[J]. Geological Magazine, 2007, 144(3): 553-568. DOI:10.1017/S0016756807003275
[25]
Zhang S H, Zhao Y, Liu X C, et al. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block:constraints on the composition and evolution of the lithospheric mantle[J]. Lithos, 2009, 110(1/4): 229-246.
[26]
倪志耀.冀北退变榴辉岩、异剥钙榴岩和变质橄榄岩及其地质意义[D].北京: 中国科学院地质与地球物理研究所, 2002, 1~83.
NI Zhiyao. Retrograded eclogites, rodingites and metamorphic periodtites and their geotectonic significance in the northern margin of the North China Craton, Hebei province, China[D]. Beijing: Institute of Geology And Geophysics Chinese Academy of Sciences, 2002, 1~83. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y469211
[27]
Teng X M, Yang Q Y, Santosh M. Devonian magmatism associated with arc-continent collision in the northern North China Craton:evidence from the Longwangmiao ultramafic intrusion in the Damiao area[J]. Journal of Asian Earth Sciences, 2015, 113: 626-643. DOI:10.1016/j.jseaes.2015.04.032
[28]
Shi Y R, Liu D Y, Miao L C, et al. Devonian A-type granitic magmatism on the northern margin of the North China Craton:SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17(4): 632-641. DOI:10.1016/j.gr.2009.11.011
[29]
徐博文, 郗爱华, 葛玉辉, 等. 内蒙古赤峰地区晚古生代A型花岗岩锆石U-Pb年龄及构造意义[J]. 地质学报, 2015, 89(1): 58-69.
XU Bowen, XI Aihua, GE Yuhui, et al. Zircon U-Pb ages of the Late Paleozoic A-type granites in Chifeng, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 2015, 89(1): 58-69. (in Chinese with English abstract)
[30]
Liu J M, Zhao Y, Sun Y L, et al. Recognition of the latest Permian to Early Triassic Cu-Mo mineralization on the northern margin of the North China block and its geological significance[J]. Gondwana Research, 2010, 17(1): 125-134. DOI:10.1016/j.gr.2009.07.007
[31]
Zeng Q D, Yang J H, Liu J M, et al. Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton:geochemistry, zircon U-Pb age and Sr-Nd-Pb isotopes[J]. Geological Magazine, 2012, 149(5): 753-767. DOI:10.1017/S0016756811000987
[32]
内蒙古地质矿产局. 1: 20万敖汉旗幅(K-50-ⅩⅧ)区域地质调查报告[R]. 1970.
Bureau of Geology and Mineral Resources of Inner Mongolia. Geological Map of Aohanqi (K-50-ⅩⅧ): Inner Mongolia, Bureau of Geology and Mineral Resources of Inner Mongolia, Scale 1: 200000[R]. 1970. (in Chinese)
[33]
刘建峰, 李锦轶, 迟效国, 等. 华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩——锆石U-Pb定年及地球化学证据[J]. 地质通报, 2013, 32(2/3): 267-278.
LIU Jianfeng, LI Jinyi, CHI Xiaoguo, et al. Early Devonian felsic volcanic rocks related to the arc-continent collision on the northern margin of North China Craton-evidences of zircon U-Pb dating and geochemical characteristics[J]. Geological Bulletin of China, 2013, 32(2/3): 267-278. (in Chinese with English abstract)
[34]
内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991.
Bureau of Geology and Mineral Resources of Inner Mongolia. Region geology of Inner Mongolia autonomous region[M]. Beijing: Geological Publishing House, 1991. (in Chinese)
[35]
内蒙古自治区地质矿产局.内蒙古1: 20万下洼幅(K-51-XVⅢ)区域地质调查报告[R]. 1967.
Bureau of Geology and Mineral Resources of Inner Mongolia. Geological map of Xiawa (K-51-XVⅢ): Inner Mongolia, bureau of geology and mineral resources of Inner Mongolia, scale 1: 200000[R]. 1967. (in Chinese)
[36]
辽宁省地质矿产局.辽宁1: 20万阜新幅(K-51-XIV)区域地质调查报告[R]. 1971.
Bureau of Geology and Mineral Resources of Liaoning Province. Geological map of Fuxin (K-51-XIV): Liaoning, bureau of geology and mineral resources of Liaoning Province, Scale 1: 200000[R]. 1971. (in Chinese)
[37]
胡泽瑾. 内蒙古昭乌达盟朝吐沟组时代应为泥盆纪[J]. 中国区域地质, 1983(6): 141.
HU Zejin. Age of the Chaotugou formation in Ju Ud League in Inner Mongolia should be Devonian[J]. Regional Geology of China, 1983(6): 141. (in Chinese)
[38]
叶浩, 张拴宏, 赵越, 等. 内蒙古赤峰地区泥盆纪晚期火山岩的发现及其地质意义[J]. 地质通报, 2014, 33(9): 1274-1283.
YE Hao, ZHANG Shuanhong, ZHAO Yue, et al. Recognition of the latest Devonian volcanic rocks in Chifeng area, northern North China block, and its geological implications[J]. Geological Bulletin of China, 2014, 33(9): 1274-1283. DOI:10.3969/j.issn.1671-2552.2014.09.002 (in Chinese with English abstract)
[39]
孙立新, 任邦方, 滕飞, 等. 内蒙古敖汉旗朝吐沟组火山岩LA-ICP-MS锆石U-Pb年龄[J]. 地质通报, 2015, 34(8): 1493-1501.
SUN Lixin, REN Bangfang, TENG Fei, et al. LA-ICP-MS zircon U-Pb ages of the volcanoic rocks from the Chao-tugou Formation in Aohan Banner, Inner Mongolia[J]. Geological Bulletin of China, 2015, 34(8): 1493-1501. DOI:10.3969/j.issn.1671-2552.2015.08.009 (in Chinese with English abstract)
[40]
Jiang N. Petrology and geochemistry of the Shuiquangou syenitic complex, northern margin of the North China Craton[J]. Journal of the Geological Society, 2005, 162(1): 203-215. DOI:10.1144/0016-764903-144
[41]
Wan B, Hegner E, Zhang L C, et al. Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites[J]. Economic Geology, 2009, 104(3): 351-363. DOI:10.2113/gsecongeo.104.3.351
[42]
张拴宏, 赵越, 刘健, 等. 华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义[J]. 岩石学报, 2007, 23(3): 625-638.
ZHANG Shuanhong, ZHAO Yue, LIU Jian, et al. Emplacement depths of the Late Paleozoic-Mesozoic granitoid intrusions from the northern North China block and their tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(3): 625-638. (in Chinese with English abstract)
[43]
孙立新, 张云, 李影, 等. 内蒙古赤峰地区晚泥盆世双峰式火山岩地球化学特征与板内伸展事件[J]. 中国地质, 2017, 44(2): 371-388.
SUN Lixin, ZHANG Yun, LI Ying, et al. Geochemical characteristics and intraplate extension of Late Devonian bimodal volcanic rocks in Chifeng area of Inner Mongolia[J]. Geology in China, 2017, 44(2): 371-388. (in Chinese with English abstract)
[44]
Smith I E M, White A J R, Chappell B W, et al. Fractionation in a zoned monzonite pluton:mount Dromedary, southeastern Australia[J]. Geological Magazine, 1988, 125(3): 273-284. DOI:10.1017/S0016756800010219
[45]
Tchameni R, Mezger K, Nsifa N E, et al. Crustal origin of early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon[J]. Lithos, 2001, 57(1): 23-42.
[46]
Martin R F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 2006, 91(1/4): 125-136.
[47]
Bonin B. Alkaline rocks and geodynamics[J]. Turkish Journal of Earth Sciences, 1998, 7: 105-118.
[48]
Yang J H, Sun J F, Zhang M, et al. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension[J]. Chemical Geology, 2012, 328: 149-167. DOI:10.1016/j.chemgeo.2011.09.011
[49]
Xu H J, Zhang J F, Wang Y F, et al. Late Triassic alkaline complex in the Sulu UHP terrane:implications for post-collisional magmatism and subsequent fractional crystallization[J]. Gondwana Research, 2016, 35: 390-410. DOI:10.1016/j.gr.2015.05.017
[50]
Paterson S R, Vernon R H, Tobisch O T. A review of criteria for the identification of magmatic and tectonic foliations in granitoids[J]. Journal of Structural Geology, 1989, 11(3): 349-363. DOI:10.1016/0191-8141(89)90074-6
[51]
Vernon R H. Review of microstructural evidence of magmatic and solid-state flow[J]. Visual Geosciences, 2000, 5(2): 1-23.
[52]
Žak J, Verner K, Holub F V, et al. Magmatic to solid state fabrics in syntectonic granitoids recording Early Carboniferous orogenic collapse in the Bohemian Massif[J]. Journal of Structural Geology, 2012, 36: 27-42. DOI:10.1016/j.jsg.2011.12.011
[53]
Zhang S H, Zhao Y. Mid-crustal emplacement and deformation of plutons in an Andean-style continental arc along the northern margin of the North China Block and tectonic implications[J]. Tectonophysics, 2013, 608: 176-195. DOI:10.1016/j.tecto.2013.09.036
[54]
吴飞, 张拴宏, 赵越, 等. 华北地块北缘内蒙古固阳地区早二叠世岩体的侵位深度及其构造意义[J]. 中国地质, 2014, 41(3): 824-837.
WU Fei, ZHANG Shuanhong, ZHAO Yue, et al. Emplacement depths of the Early Permian plutons from Guyang area in the northern margin of the North China Block and their tectonic implications[J]. Geology in China, 2014, 41(3): 824-837. DOI:10.3969/j.issn.1000-3657.2014.03.011 (in Chinese with English abstract)
[55]
赵越, 陈斌, 张拴宏, 等. 华北克拉通北缘及邻区前燕山期主要地质事件[J]. 中国地质, 2010, 37(4): 900-915.
ZHAO Yue, CHEN Bin, ZHANG Shuanhong, et al. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas[J]. Geology in China, 2010, 37(4): 900-915. DOI:10.3969/j.issn.1000-3657.2010.04.007 (in Chinese with English abstract)
[56]
Zhang S H, Zhao Y, Ye H, et al. Origin and evolution of the Bainaimiao arc belt:Implications for crustal growth in the southern Central Asian Orogenic Belt[J]. Geological Society of America Bulletin, 2014, 126(9/10): 1275-1300.
[57]
Chao E C T, Back J M, Minkin J A, et al. The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China: a cornerstone example for giant polymetallic ore deposits of hydrothermal origin[R]. Washington, DC: U.S. Government Printing Office, 1994, 2143.
[58]
刘敦一, 简平, 张旗, 等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J]. 地质学报, 2003, 77(3): 317-327.
LIU Dunyi, JIAN Ping, ZHANG Qi, et al. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia:evidence for the Early Paleozoic subduction[J]. Acta Geologica Sinica, 2003, 77(3): 317-327. DOI:10.3321/j.issn:0001-5717.2003.03.004 (in Chinese with English abstract)
[59]
许立权, 邓晋福, 陈志勇, 等. 内蒙古达茂旗北部奥陶纪埃达克岩类的识别及其意义[J]. 现代地质, 2003, 17(4): 428-434.
XU Liquan, DENG Jinfu, CHEN Zhiyong, et al. The identification of Ordovician adakites and its signification in northern Damao, Inner Mongolia[J]. Geoscience, 2003, 17(4): 428-434. DOI:10.3969/j.issn.1000-8527.2003.04.011 (in Chinese with English abstract)
[60]
Jian P, Liu D Y, Kröner A, et al. Time scale of an Early to Mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth[J]. Lithos, 2008, 101(3/4): 233-259.
[61]
苏养正. 内蒙古草原地层区的古生代地层[J]. 吉林地质, 1996, 15(3/4): 42-54.
SU Yangzheng. Paleozoic stratigraphy of Nei Mongol grass stratigraphical province[J]. Jilin Geology, 1996, 15(3/4): 42-54. (in Chinese with English abstract)
[62]
张允平, 苏养正, 李景春. 内蒙古中部地区晚志留世西别河组的区域构造学意义[J]. 地质通报, 2010, 29(11): 1599-1605.
ZHANG Yunping, SU Yangzheng, LI Jingchun. Regional tectonics significance of the Late Silurian Xibiehe Formation in central Inner Mongolia, China[J]. Geological Bulletin of China, 2010, 29(11): 1599-1605. DOI:10.3969/j.issn.1671-2552.2010.11.001 (in Chinese with English abstract)
[63]
王平. 内蒙古达茂旗巴特敖包地区的西别河剖面与西别河组[J]. 吉林大学学报(地球科学版), 2005, 35(4): 409-415.
WANG Ping. The Xibiehe section and Xibiehe Formation of the Bateaobao area in Darhan Mumingan Joint Banner, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(4): 409-415. (in Chinese with English abstract)