地质力学学报  2019, Vol. 25 Issue (5): 798-819
引用本文
王国灿, 张孟, 冯家龙, 廖群安, 张雄华, 康磊, 郭瑞禄, 玄泽悠, 韩凯宇. 东天山新元古代—古生代大地构造格架与演化新认识[J]. 地质力学学报, 2019, 25(5): 798-819.
WANG Guocan, ZHANG Meng, FENG Jialong, LIAO Qun'an, ZHANG Xionghua, KANG Lei, GUO Ruilu, XUAN Zeyou, HAN Kaiyu. NEW UNDERSTANDING OF THE TECTONIC FRAMEWORK AND EVOLUTION DURING THE NEOPROTEROZOIC-PALEOZOIC ERA IN THE EAST TIANSHAN MOUNTAINS[J]. Journal of Geomechanics, 2019, 25(5): 798-819.
东天山新元古代—古生代大地构造格架与演化新认识
王国灿1,2 , 张孟2 , 冯家龙1 , 廖群安2 , 张雄华2 , 康磊3 , 郭瑞禄2 , 玄泽悠1 , 韩凯宇2     
1. 中国地质大学(武汉)地质调查研究院, 湖北 武汉 430000;
2. 中国地质大学(武汉)地球科学学院全球大地构造研究中心, 湖北 武汉 430000;
3. 中国地质调查局西安地质调查中心, 陕西 西安 710000
摘要:基于基础地质调查获得的新资料,对涉及东天山新元古代-古生代大地构造演化格局存在争议或认识模糊的准噶尔-吐哈地块、北天山洋盆和康古尔洋盆的属性及相互时空关联进行了重新界定。提出准噶尔-吐哈地块为相对刚性的、深部为0.8~0.55 Ga新生地壳但表层存在>1.0 Ga古老陆壳残片的具有大洋高原性质的统一块体,北界范围随着北部边缘的裂拚演化过程而随时间发生变化。基于对吐哈地块与中天山之间新发现的大草滩蛇绿岩以及其他蛇绿混杂岩带的系统梳理,提出古生代两阶段不同性质的洋盆演化模型。具有显著不同板块分隔意义的北天山洋盆主要出现于寒武-中泥盆世,代表长期分隔准噶尔-吐哈地块与中天山-塔里木板块的主大洋,而康古尔古洋盆是石炭纪-早二叠世早期叠加在已经缝合的北天山洋盆的古大陆边缘体系之上重新打开的持续时间较短的有限小洋盆。结合近年来其他相关研究新成果,重新构建了东天山地区新元古代-古生代构造演化模型。
关键词东天山    新元古代—古生代    大地构造格架与演化    准噶尔-吐哈地块    北天山洋    康古尔洋    
DOI10.12090/j.issn.1006-6616.2019.25.05.066     文章编号:1006-6616(2019)05-0798-22
NEW UNDERSTANDING OF THE TECTONIC FRAMEWORK AND EVOLUTION DURING THE NEOPROTEROZOIC-PALEOZOIC ERA IN THE EAST TIANSHAN MOUNTAINS
WANG Guocan1,2 , ZHANG Meng2 , FENG Jialong1 , LIAO Qun'an2 , ZHANG Xionghua2 , KANG Lei3 , GUO Ruilu2 , XUAN Zeyou1 , HAN Kaiyu2     
1. Institute of Geological Survey, China University of Geosciences, Wuhan 430000, Hubei, China;
2. Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan 430000, Hubei, China;
3. Xi'an Center of Geological Survey, Geological Survey of China, Xi'an 710054, Shannxi, China
Abstract: Based on the new data obtained from the geological survey, the properties and temporal and spatial correlation of the Junggar-Tuha block, North Tianshan ocean basin and Kanggur ocean basin during the Neoproterozoic-Paleozoic era in the East Tianshan mountains are redefined. It is proposed that the Junggar-Tuha block is a relatively rigid unified block with the characteristics of oceanic plateau with juvenile crust of 0.8~0.55 Ga in depth and some>1.0 Ga old crust fragments on the surface. The northern boundary of the block changed with time as the evolution of its northern margin. Based on newly defining of the Dacaotan ophiolite and systematic carding of other ophiolites between the Junggar-Tuha block and the Middle Tianshan block, we suggest two stages of the oceanic basin evolution in the Paleozoic era to the south of the Junggar-Tuha block. The North Tianshan oceanic basin was developed in the earlier stage occurred in the Cambrian-Middle Devonian, representing the main oceanic basin which significantly separated the Junggar-Tuha block from the Middle Tianshan-Tarim plate for a long time. The Kanggur oceanic basin, however, is a small re-opened limited oceanic basin developed in the Carboniferous-Early Permian with a short duration which was superimposed on the sewn paleo-continental margin of the North Tianshan Ocean. Combined with other new research achievements in recent years, tectonic evolution model during the Neoproterozoic-Paleozoic in the East Tianshan mountains is reconstructed.
Key words: East Tianshan Mountains    Neoproterozoic-Paleozoicera    tectonic framework and evolution    Junggar-Tuha block    North Tianshan ocean    Kanggur ocean    
0 引言

作为全球显生宙以来规模最大的造山带之一,中亚造山带记录了新元古代罗德尼亚超大陆裂解以来古亚洲洋盆复杂的俯冲、增生、碰撞过程[1-6](图 1)。不同学者分别从蛇绿岩时代及属性[7-14]、古生代岩浆作用[15-20]、沉积物源[21-26]和微地块基底属性界定[27-32]等方面对该造山带内不同区域不同阶段构造背景及演化进行了分析。然而,由于不同学者资料掌握的不同,对中亚造山带古亚洲洋的演化模型存在诸多不同意见[4, 33-36]。东天山作为中亚造山带的重要组成部分,相关学者对其古洋盆演化及洋陆转换过程也进行了诸多探讨,但总体来说其研究程度相对薄弱,不同构造单元的性质和相互关系长期存在争议,影响了对整个中亚造山带结构与演化的深刻认识。

a—中亚造山带地质简图(据Jahn et al修改[1]);b—新疆北部构造单元分区图(据Xiao et al修改[4]);c—东天山地区地质简图 图 1 东天山地区大地构造位置及区域地质简图 Fig. 1 Tectonic setting and geological sketch map of the East Tianshan area

本文基于近些年在新疆东天山地区开展的基础地质调查及专题研究工作,对涉及东天山新元古代—古生代区域构造演化格局且目前仍存在明显争议的准噶尔-吐哈地块、北天山洋盆和康古尔洋盆的构造属性及相互时空关联进行重新界定,并结合近年来其他相关研究的新成果,对东天山有关古洋盆体系发育和洋陆转换过程进行了梳理,重新构建东天山地区古生代区域构造格架和构造演化模型。

1 东天山地区地质背景概述

东天山地区位于中亚造山带西南部(图 1),目前的构造单元划分方案将该地区自北向南划分为东准噶尔造山带、北天山造山带、中天山地块和南天山造山带(图 1b)。

东准噶尔造山带中广泛发育泥盆纪岛弧火山岩和石炭纪—二叠纪后碰撞型岩浆岩[35, 37-42],被视为不具备古老基底的增生岛弧拼合体[35],但最近研究揭示,在该造山带塔黑尔地区侵入到奥陶纪地层中的闪长岩脉中含有古元古代的变质基底捕掳体[28]。该造山带中部的阿尔曼太蛇绿岩往往被认为是寒武—奥陶纪古亚洲洋的残迹[14, 43-45],北侧的库尔提-布尔根蛇绿岩和南侧的卡拉麦里蛇绿岩则为志留纪—泥盆纪的洋盆残迹[11-12, 46-51]

北天山造山带北以卡拉麦里蛇绿混杂岩带与东准噶尔相接,南以阿奇克库都克断裂与中天山为邻。以往一般以康古尔-黄山断裂为界将其划分为北侧的准噶尔-吐哈地块和南侧的觉罗塔格构造带[36, 51]。准噶尔-吐哈地块大部分为中新生代陆相盆地沉积覆盖,但南北边缘区域广泛剥露前中生代基岩。在前石炭纪,南缘的大南湖一带广泛发育奥陶—泥盆纪的弧岩浆活动[20, 52-55],而其北缘博格达-哈尔里克山则往往被视为被动大陆边缘[34, 51, 56-57]或弧前盆地[58](图 1b)。石炭—二叠纪南北缘均广泛发育岩浆活动[57],但对其成生构造环境存在伸展[17, 59-61]、岛弧[4, 36, 62-64]、弧后[18, 65-66]等多种不同认识。准噶尔-吐哈地块目前绝大多数岩浆岩的模式年龄集中在0.8~0.55 Ga,全岩εNd和锆石εHf值均为正值,这些都不支持其存在广泛的>1.0 Ga的基底[16, 19, 61, 67],但一些地区的奥陶纪碎屑沉积中含大量前新元古代的碎屑锆石或侵入岩中含前新元古代的片麻岩捕掳体却暗示其可能存在有新元古代之前的古老结晶基底[22, 24, 27-28, 68]。康古尔-黄山断裂以南的觉罗塔格构造带广泛发育石炭纪火山岩-碎屑岩-碳酸盐岩沉积和晚古生代花岗质侵入岩[69-70],对其构造背景的判断存在有弧后[71-74]、弧前[26, 36, 75-77]和陆内裂谷[17, 78]等不同观点。该带存在有寒武—奥陶纪和石炭纪不同时期蛇绿岩或准蛇绿岩[8-10, 79-80],故一些学者认为它们所代表的洋盆是一至少始于寒武纪且一直持续到晚石炭世或早二叠世才闭合的大型洋盆[26, 36]

中天山地块北以阿其克库都克断裂与觉罗塔格构造带相接。该地块以广泛发育前寒武纪变质结晶基底为特征[32, 81]。锆石年龄结构显示,其与塔里木板块为具有统一前寒武纪基底的块体[32, 82-85]。也有学者认为其与塔里木地块可能为不同构造起源的块体[30, 86]。无论两者是否具有统一基底,但在寒武纪至奥陶纪这段时间两者基本处于同一构造演化背景[86, 87-88]。该地块在1.0~0.9 Ga左右发育陆缘弧和同-后碰撞岩浆记录[29, 42, 81],在0.8~0.7 Ga则发育可能与罗德尼亚超大陆裂解有关的板内火山活动[89-91]。该地块志留纪初期与塔里木板块分离,并在两者之间形成南天山洋[85, 88, 92],至石炭纪该地块被认为是南天山洋北向俯冲形成的“日本型”岛弧[36, 93]

南天山造山带介于中天山地块与塔里木克拉通之间,广泛出露有志留—泥盆纪火山岩-沉积岩以及多条志留纪—石炭纪的蛇绿岩带[91, 94-96],为南天山洋盆及其北向俯冲的记录。蛇绿岩性质以MORB类型为主[97-99],少量的SSZ型蛇绿岩表明其曾发生过俯冲[96]。多数学者认为该洋盆为志留纪开始拉张形成的小洋盆[88, 92],并于石炭纪闭合[51],但也有学者认为其代表古亚洲洋的南支主洋盆,洋盆可能持续到二叠甚至三叠纪才闭合[83, 100-102]。洋盆北向俯冲极性较为明显[36, 75],也有学者认为存在向塔里木板块的南向俯冲[92]

综上所述,尽管大量研究不断揭示了东天山地区古生代的构造属性及演化历史,但一些关键问题,特别是不同构造单元的性质和相互关系认识模糊,存在较多争议,突出表现在对准噶尔-吐哈地块、北天山洋、康古尔构造带地质涵义的界定不明确,对准噶尔-吐哈地块基底属性长期争议,由此带来对北天山洋盆、康古尔洋盆的关系及演化认识模糊。

2 准噶尔-吐哈地块属性的界定

传统意义上的准噶尔-吐哈地块或“地体”主要指由西北部西准噶尔唐巴勒-达尔布特蛇绿岩带、北部东准噶尔卡拉麦里蛇绿岩带和南部北天山蛇绿岩带所围限的以准噶尔盆地和吐哈盆地为主体的区域[28, 31]。在传统的俯冲-增生模型中,准噶尔-吐哈地体一般被认为是不具备前寒武古老基底的古生代岛弧系统[5, 36],介于两盆地之间的东天山博格达-哈尔里克山被认为是中新生代崛起的,广泛剥露出的古生代基岩是古生代岛弧系统褶皱基底的代表。而在俯冲-增生-碰撞模型中,准噶尔-吐哈地块往往又被视为发育有古老前寒武基底的微陆块群[34, 28, 56]。因此,有关准噶尔-吐哈地块是否存在前寒武纪基底?如果存在是否是统一基底?这些问题一直困扰着广大地质工作者。

笔者近几年在东天山地区的地质调查和专题研究工作中注意到了以下基本事实,①奥陶纪—泥盆纪卡拉麦里-莫钦乌拉断裂南侧(即准噶尔-吐哈地块的北缘)长期发育稳定的、具伸展背景的被动大陆边缘沉积[25, 56-57, 103],泥盆纪与石炭纪之交卡拉麦里-莫钦乌拉洋盆闭合,但其南侧下—中泥盆统与下石炭统之间却表现为平行不整合接触关系[46, 57, 104],说明古生代区域性的汇聚缩短变形对准噶尔-吐哈地块北部地区影响不大,即该地区总体处于相对稳定构造环境,暗示着介于卡拉麦里洋与北天山洋之间的古亚洲洋盆体系中存在相对稳定的刚性陆块区,其下部很可能存在与准噶尔盆地相连的相对刚性基底。②分布在准噶尔-吐哈地块上的奥陶纪地层中有大量>1.0 Ga的碎屑锆石报道[21-22, 28],卡拉麦里蛇绿岩带北侧塔黑尔地区侵入到奥陶纪地层中的闪长岩脉中还发育有古元古代的片麻岩及磁铁石英岩捕掳体[28];考虑到该地块在奥陶纪及之前北与阿尔泰地块以阿尔曼太洋相隔,南与中天山地块以北天山洋相隔[28, 36, 105],故这些古老碎屑锆石应来自地块内部,进而可推断准噶尔-吐哈地块存在古老基底的组分。③准噶尔-吐哈地块以及相邻区域古生代岩浆岩多数来源于相对亏损地幔源区,仅少数受地壳混染显示出富集的特征[106],其εNd值多在4~8之间,个别在2~4之间[27, 106],锆石εHf值多在10~17之间,个别为负[27],岩浆系统的Nd模式年龄或锆石Hf模式年龄普遍<1.0 Ga,并且集中在0.8~0.55 Ga[16, 19-20, 53, 61-65, 67, 107-111];此外,笔者在卡拉麦里蛇绿岩带北侧中泥盆统乌鲁苏巴斯套组的岛弧型安山岩中也发现了大量介于780~770 Ma的捕获锆石(另文发表);这些证据说明,0.8~0.55 Ga是准噶尔-吐哈地块新生地壳的形成和生长的主要时期,古生代岩浆系统的源区主要来自于0.8~0.55 Ga新生地壳的部分熔融,而来自更深源的诸如泥盆纪乌鲁苏巴斯套组岛弧火山岩可以穿过新生地壳捕获其中的锆石。④整个新疆北部古生代碎屑沉积的碎屑锆石年龄在0.8 Ga左右皆存在一小规模的峰值,而在0.75~0.6 Ga出现明显的间断[22, 28, 82, 84]。联系到大约8亿年左右正是罗德尼亚超大陆开始裂解的阶段[54],而在西伯利亚克拉通与伊犁-中天山地块之间,这一事件主要集中发生在820~770 Ma之间,在OIB型玄武岩或岩墙群[91, 112, 113]、裂谷型双峰式火山岩[114-117]和板内花岗岩[118]等方面皆有反映,故区域碎屑锆石0.8 Ga左右的峰值应与地幔柱诱发的板内裂解事件有关,而0.75~0.6 Ga的间断很可能与洋盆扩张时期弧火山活动的停止和准噶尔-吐哈地块新生地壳在形成之后一直未遭受大规模剥蚀有关。

准噶尔-吐哈地块所表现的上述地质结构可以用类似现今Kerguelen大型大洋高原和Arabian-Nubian地盾区新元古代大洋高原的形成模型来解释[119-123](图 2)。研究显示,以Kerguelen和Arabian-Nubian为代表的大型大洋高原多形成于板块裂解初期。其基性熔岩的源区以N-MORB为主,混有少量OIB源区的组分[124-125]。现今大洋高原岩浆岩的ε(Nd)i值多在4~11之间,ε(Hf)i多在10~18之间[126-127],在一些遭受陆壳混染的大洋高原局部两数值会显著降低[128],但ε(Nd) i仍为正值,与发育古老陆壳基底的洋内微板块(如日本岛弧)存在明显的差异[129-130]。在裂解初期,初始洋壳往往在大洋高原形成之前就已出现[122-123],与此同时,陆壳底部的大量地幔柱岩浆通过强烈的板底垫托或再循环作用使得古老地壳物质以“顶垂体”或“捕掳体”的形式存在于已固结的表层基性岩浆中[119, 121, 128, 131-132]。大洋高原在拼合至大陆边缘之后,受后撤大洋板片的俯冲和自身部分熔融所产生的、具有新生地壳源区特点的酸性岩浆侵入体的发育使其逐渐向酸性陆壳演化[121, 133, 134],而最终形成的块体往往比具古老陆壳基底的地块还要稳定[135]

(据文献[123, 132, 136]修改) (modified after references [123, 132, 136]) 图 2 准噶尔-吐哈地块形成示意图 Fig. 2 Schematic diagram showing the formation of the Junggar-Tuha block

基于上述,笔者认为,准噶尔-吐哈地块的基底为一类似现今Kerguelen大洋高原和新元古代Arabian-Nubian地盾区新元古代大洋高原性质的刚性统一块体。其形成于罗德尼亚超大陆裂解初期,深部为0.8~0.55 Ga地幔柱活动的底垫作用而结晶的以亏损地幔为主要源区的新生镁铁质地壳,它们成为古生代岩浆活动的源区或岛弧带岩浆上侵或喷发的捕获区;上层则为大量喷发的玄武岩并分布有>1.0Ga的古老地壳碎片,它们成为古生代期间碎屑沉积的重要剥蚀源区。伴随着底垫作用镁铁质岩石的固结和上覆火山-沉积物的加厚,其逐渐表现出刚性地块的特征。

准噶尔-吐哈地块的北界以往一般界定为卡拉麦里蛇绿岩带。笔者对巴里坤地区卡拉麦里蛇绿岩带两侧古生代地层序列的对比研究发现,前志留纪两侧具有一定的相似性,差异性主要体现在志留纪至石炭纪(图 3)。结合卡拉麦里蛇绿岩和南侧被动陆缘沉积所代表的洋盆主要发育于志留—泥盆纪[11-12, 46-47],我们认为,准噶尔-吐哈地块的北界范围存在随时间的变化,在志留纪以前的寒武—奥陶纪,北界应该以阿尔曼太蛇绿岩为界,代表准噶尔-吐哈地块与西伯利亚板块分隔的古洋盆。晚奥陶世,阿尔曼太洋盆闭合,准噶尔-吐哈地块与阿尔泰-西伯利亚板块缝合,南部卡拉麦里洋盆于志留纪开始打开,成为新的准噶尔-吐哈地块的北界。

图 3 卡拉麦里-莫钦乌拉断裂两侧地层对比表 Fig. 3 Stratigraphic correlation on the both sides of the Kelameili-Moqinwula fault
3 北天山洋的涵义及其闭合时限的新认识

以往学者一般将北天山洋定义为分隔准噶尔-吐哈地块与中天山地块之间的古洋盆。在这一范围内存在有不同时代蛇绿岩的报道,包括寒武纪—奥陶纪沿中天山北缘分布的冰达坂-干沟N-MORB型蛇绿岩[10, 80]和尾亚E-MORB蛇绿岩[10, 137]、晚寒武世—早奥陶世位于觉罗塔格山北缘的康古尔塔格SSZ型蛇绿岩[7-8]、晚志留世—早泥盆世位于准噶尔-吐哈地块南缘的大草滩SSZ型蛇绿岩[138]、石炭纪沿巴音沟—康古尔—苦水一带分布的MORB型蛇绿岩或准蛇绿岩[9, 26]。这些不同部位发育的蛇绿岩带在东西方向上不连续,但均分布于准噶尔-吐哈地块与中天山地块之间的相对较狭窄的觉罗塔格构造带内(图 1b),因此,已有研究一般将其作为统一的北天山洋盆纪录,视为至少始自寒武纪并一直持续到晚石炭世甚至二叠纪的大洋盆[4, 26]

笔者近年来基于基础地质调查工作对准噶尔—吐哈地块与中天山地块之间的不同蛇绿混杂岩带空间延伸、形成时代、构造环境进行了系统的重新梳理。认为上述出现在不同部位、不同时代的蛇绿岩实际上记录了准噶尔-吐哈地块与中天山地块之间古生代多阶段的洋陆转化过程,不同阶段洋盆的性质和特点各不相同。具有显著不同板块分隔意义的北天山洋盆主要出现于寒武纪—中泥盆世,而石炭纪(局部始自晚泥盆世)沿巴音沟—康古尔—苦水一带的蛇绿岩或准蛇绿岩带实际是代表了叠加在早期已经缝合的大陆边缘体系之上重新打开的有限的弧后小洋盆(详见第5节),其成因很可能与南天山洋的北向俯冲有关。该弧后有限洋盆的初始打开在空间上存在一定的差异,巴音沟地区可能始于晚泥盆世晚期[139],而大部地区玄武岩的年龄主要体现为石炭纪。

这一结论的核心依据之一来自于笔者对最近新发现的大草滩蛇绿岩开展的详细的大比例尺填图解剖所揭示的其存在的显著的构造古地理分割意义。舍建忠曾报道过这一蛇绿岩中的辉长岩的时代为(416.5±4) Ma的早泥盆世早期[138],我们采集的两个堆晶辉长岩样品的锆石U-Pb测年结果为468~463 Ma的中奥陶世(另文发表),灰岩岩片中的珊瑚动物时代为中志留世—早泥盆世(项目资料),说明这一蛇绿岩所代表的古洋盆自奥陶纪已经存在且一直持续至早泥盆世。该蛇绿岩带北侧未卷入混杂岩带的志留纪—早泥盆世复理石沉积的碎屑锆石年龄结构基本不具有前新元古代年龄信息,与北侧准噶尔-吐哈地块少见的前新元古代基底和岩浆岩年龄信息相协调(图 4a),反映为北部准噶尔-吐哈地块南部陆缘沉积;卷入混杂岩带的早泥盆世复理石沉积则含有较多前寒武纪碎屑锆石年龄(图 4b),与中天山地块年龄峰值存在良好的对应关系,而与准噶尔-吐哈地块和阿尔泰地块的早古生代沉积物中的前寒武纪碎屑锆石的年龄峰值存在明显差异[12, 22, 140-141]。考虑到准噶尔-吐哈地块内早古生代沉积物的碎屑锆石主要由其自身基底和弧岩浆活动提供,故这些前寒武纪的碎屑锆石应来自南部中天山。因此,大草滩蛇绿岩带所代表的洋盆至少在奥陶纪—早泥盆世具有分隔南北不同性质陆块的构造古地理分隔意义。这一蛇绿岩带往西很可能与寒武纪—奥陶纪康古尔塔格蛇绿岩带相连并进一步统一到更西部的寒武纪—奥陶纪冰达坂-干沟蛇绿岩带上(图 1b),因此,总体上,冰达坂-干沟-康古尔塔格-大草滩蛇绿岩带所代表的北天山洋盆从寒武—中泥盆纪长期分隔着南部中天山-塔里木板块与北部准噶尔-吐哈板块。

a—北侧未卷入混杂岩带的志留纪—早泥盆世砂岩; b—南侧卷入蛇绿岩带中的早泥盆世砂岩 图 4 大草滩蛇绿岩南北两侧砂岩的碎屑锆石U-Pb年龄结构对比 Fig. 4 Detrital zircon U-Pb age comparison between the Silurian-Early Devonian sandstone to the north side of the Dacaotan ophiolite belt and the Early Devonian sandstone in the south part of the ophiolite belt

大草滩蛇绿岩带以南至中天山北缘的阿奇克库都克断裂之间的范围尽管石炭纪时期构造环境存在较大争议(详见下文),但早古生代—泥盆纪一般被认为是岛弧环境,称之为大南湖-头苏泉岛弧带[142]。该岛弧带古生代岩浆岩的εNd(t)及岩浆岩锆石εHf(t)值多显示为正值,也多具有与准噶尔-吐哈地块类似的0.9~0.55 Ga的模式年龄[26, 54, 70, 73, 142-143],与中天山地区古生代岩浆岩所揭示的主体为负的全岩εNd(t)及锆石εHf(t)值以及广泛的早前寒武纪模式年龄明显不同[70, 93, 144]。基于此,笔者认为大草滩蛇绿岩至阿奇克库都克断裂之间的区域为具有与准噶尔-吐哈地块相似基底、受洋脊扩张作用从新元古代大洋高原上裂解下来、具洋底凸起性质的微地块(土屋地体),其与中天山之间的阿其克库都克断裂带可能为代表弧陆碰撞的缝合带。沿该断裂带的代表性蛇绿岩出现在断裂东段的尾亚地区,陈希杰在尾亚约2 km宽度范围内甄别出蛇纹岩、辉绿岩、辉长岩以及硅质岩等组合,基于岩石地球化学分析认为其属于构造肢解的E-MORB型蛇绿岩成员[137]。干沟地区早志留世前陆盆地复理石沉积不整合覆于干沟蛇绿岩之上以及彩霞山北侧中晚志留统红柳峡组与中奥陶统荒草坡群大柳沟组之间的角度不整合指示该微地块于奥陶纪—志留纪之交向南拼合至中天山地块之上[80, 145-146],大草滩蛇绿岩中的早泥盆世复理石具有来自中天山的碎屑物质同样说明到早泥盆世该微地块已经与南部的中天山焊合。

需要进一步明确的另一个问题是以康古尔塔格-大草滩蛇绿岩所代表的北天山主洋盆何时关闭。根据我们区域地质调查的最新资料,在吐哈盆地南缘,最新发现一套晚泥盆世火山岩-火山碎屑岩与大草滩蛇绿岩、下—中泥盆统复理石和火山岩皆呈角度不整合接触(图 5a5b)。晚泥盆世火山岩-火山碎屑岩组合具后碰撞伸展背景(图 5c5d),底部出现典型的陆相磨拉石沉积(图 5e),代表地表强烈抬升之后的快速剥蚀环境。基于此,我们认为中晚泥盆世之交是大草滩洋盆或北天山主洋盆最后闭合的时间,进入到晚泥盆世,整个准噶尔-吐哈地块的南部地区构造体制发生了重大变革,转为碰撞后的伸展环境。

a、b—康古尔塔格组与下伏地层之间的角度不整合接触关系;c—康古尔塔格组下部安山岩锆石U-Pb年龄协和图;d—康古尔塔格组火山岩Ta/Yb-Th/Yb构造环境判别图;e—康古尔塔格组底部含巨大砾石的陆相磨拉石堆积 图 5 上泥盆统康古尔塔格组与大草滩蛇绿构造混杂岩的不整合关系及其时代和构造背景 Fig. 5 Unconformity relationship between the Upper Devonian Kanggurtag Formation and the Dacaotan ophiolitic mélanges, and its age and tectonic setting

此外,混杂岩带北侧早—中泥盆世的生物古地理区系的变迁也印证了这一结论。传统意义上的准噶尔-吐哈地块上的底栖动物群在中志留世属于北方大区的蒙古-鄂霍茨克动物省,以发育 Tuvaella 动物群和冷水型底栖动物为特征[147-150]。我们在该地块南缘发现的早泥盆世珊瑚仍然具有这一特征[151],但中泥盆世的珊瑚动物群面貌却具有特提斯大区与北方大区物种混生的特征(另文发表),至中泥盆世晚期,新疆北部(中天山地块北侧)的珊瑚动物已具有浓厚的特提斯大区生物群的色彩[152]。根据生物大地构造学理论,洋盆规模的不断缩小可导致两个生物区系内的底栖生物群落产生物种交流[153-154],故可以推断在中泥盆世,区域上已经不再存在具有古地理分隔意义的大型洋盆。

综上所述,笔者将北天山洋彻底闭合的时间限定为中—晚泥盆世之交,北天山洋为自新元古代中晚期诞生以来持续至早—中泥盆世的大洋盆,而石炭纪的蛇绿岩则为后期伸展作用所导致的有限板内裂解(详见下文)。

4 “短命”康古尔洋的新认识

上节提到前人一般将分布于准噶尔-吐哈地块与中天山地块之间的相对较狭窄的觉罗塔格构造带内的不同部位不同时代的蛇绿岩带不加区分地视为统一的北天山洋盆纪录,其时代跨度至少始自寒武纪并一直持续到晚石炭世甚至二叠纪[4, 26, 75, 80, 155]。详细梳理觉罗塔格构造带内蛇绿岩的时空展布特点发现,对中天山-塔里木板块与准噶尔-吐哈板块具有显著分隔意义的蛇绿岩带主要以发育于寒武-中泥盆世期间的冰达坂-干沟-康古尔塔格-大草滩蛇绿岩带所代表,而沿巴音沟—康古尔—苦水一带展布的康古尔蛇绿岩或准蛇绿岩带实际是代表了叠加在早期已经缝合的大陆边缘体系之上于石炭纪重新打开的有限小洋盆。主要依据有以下几点。

(1) 康古尔蛇绿混杂岩带的蛇绿岩与代表北天山洋盆的康古尔塔格蛇绿岩和大草滩蛇绿岩的时代框架存在显著差异,前者时代主要为石炭纪,局部巴音沟地区硅质岩牙形石可下延到晚泥盆世[139]。我们从土屋地区和雅满苏地区采集的两件玄武岩样品,分别获得(293.7±5.3) Ma和(315.1±2.9) Ma的岩浆结晶年龄(另文发表)。卷入其中的碎屑岩,Chen et al获得最年轻碎屑锆石年龄为317 Ma[26],我们的一件碎屑锆石样品获得284 Ma的最年轻年龄(另文发表)。这些年龄信息说明康古尔洋盆始自晚泥盆,主要发育于石炭纪,并延续到早二叠世早期。后者蛇绿岩的时代存在于奥陶纪—早泥盆世(详见第3节)。

(2) 两者蛇绿岩组合的主要构成不同。康古尔蛇绿混杂岩带中的古大洋岩石圈组合主要发育代表大洋岩石圈上部的辉长岩、玄武岩和(放射虫)硅质岩,并没有出现地幔部分的橄榄岩组合,与上节所述的成分更多元、结构更复杂的较古老的代表北天山洋盆的蛇绿岩系存在显著差别。反映康古尔洋盆裂解程度的有限。

(3) 两者蛇绿混杂岩带的构造混杂面貌不同。尽管均表现为基质与岩片的组合,但卷入康古尔蛇绿混杂岩带的古大洋岩石圈残片的围岩或者基质主要是时代相对单一的石炭纪干墩岩组(C1g)—梧桐窝子岩组(C2w)碎屑岩系,与康古尔混杂岩带相关的两侧地层系统也主体为石炭纪火山岩-碎屑岩-碳酸盐岩沉积[69, 156](图 6)。尽管他们的构造背景存在岛弧、弧后、弧前和陆内裂谷等不同观点,但基本限定了与康古尔洋盆有关的陆缘沉积体系主要发生在石炭纪,总体构造混杂程度相对较低;而代表北天山洋盆的康古尔塔格蛇绿混杂岩和大草滩蛇绿混杂岩带的古大洋岩石圈残片的围岩或者基质则表现为奥陶—中泥盆的不同时代的碎屑岩系,呈现出更为复杂的基质-岩片结构,构造混杂面貌更为复杂。

图 6 康古尔构造带构造格架简图 Fig. 6 Structural framework of the Kanggur tectonic belt

(4) 康古尔蛇绿混杂岩带玄武岩锆石U-Pb年龄样品中有较多400~500 Ma的捕获锆石(另文发表),说明玄武岩在上升溢流的过程中混染了早古生代地壳。玄武岩样品微量元素以及稀土元素特征也显示其虽然具有N-MORB、E-MORB特征,但样品中Nb、Ta负异常和Pb正异常均指示玄武岩喷发过程中受到上地壳混染。部分样品呈现Nb/La<1的特征,也说明玄武岩受到地壳混染(另文发表)。这些特点说明,康古尔洋盆是在原古生代陆壳基础上重新裂解的有限小洋盆。

基于上述,本文认为发育于石炭系干墩岩组—梧桐窝子岩组中的蛇绿岩所代表的康古尔洋盆系统与寒武—泥盆纪的北天山洋盆系统是两个完全不同性质、不同阶段的洋盆体系,康古尔洋盆是叠加在早期已经缝合的大陆边缘体系之上于石炭纪重新打开并存续到早二叠世早期的有限小洋盆。

基于康古尔构造带构造年代学分析,可以进一步对康古尔有限洋盆的闭合时间进行了约束。详细的构造解析揭示,康古尔构造带的主要韧性构造变形可划分为两期,早期为南北向的纯剪切挤压变形,表现为区域性的近东西走向的近直立的透入性板劈理的发育,沿劈理面线理不明显,或依稀发育高角度顺劈理倾向方向的拉伸线理。在雅山地区,可见该期劈理被基本无变形、年龄为273 Ma的雅山花岗岩侵入切割[149],说明该期变形发生在273 Ma之前。陈文对康古尔南部受早期推覆韧性剪切变形所形成的白云母绿泥石糜棱岩进行全岩40Ar-39Ar年龄测试获得(283.7±2.4) Ma的坪年龄,而侵入早期推覆韧性剪切变形带中的未变形花岗岩的钾长石40Ar-39Ar年龄测试获得(280.2±1.4) Ma坪年龄[157]。考虑到遭受变形的蛇绿构造混杂岩系的有关锆石年龄所揭示的洋盆沉积上限为284 Ma,因此,可以将早期南北向共轴挤压韧性变形限定在290~280 Ma之间,代表了康古尔有限洋盆的闭合时间。另外,角度不整合于石炭纪地层之上的具有磨拉石特点的早二叠纪晚期阿尔巴萨依组(P1ae)和中晚二叠世阿其克布拉克(P2-3a)则从沉积上支持是康古尔有限洋盆于早二叠世的闭合[158]

沿康古尔构造带的晚期韧性变形表现为右旋走滑韧性剪切变形。总体仍表现为近东西向的面理,构造岩仍以低绿片岩相的千糜岩、砂泥质构造片岩等为主,但面理上透入性发育缓倾伏的拉伸线理。基于糜棱岩中显微构造变形特点和新生基质矿物(绿泥石+绢云母)组合,以及弥散的石英C轴组构特点(另文发表),韧性剪切变形的温度应为300 ℃以下的低绿片岩相。康古尔右旋走滑韧性剪切变形的变形温度条件与早期纯剪挤压变形大体相当,且在露头尺度两期面理的产状难以区分,因此前人往往将两期变形视为同一强变形带的两期活动。然而,详细的构造制图显示,晚期的右旋走滑韧性剪切变形带实际上小角度斜切早期纯剪挤压变形劈理,自西向东从康古尔塔格经克孜尔塔格、夹白山、雅满苏北山、并进一步东延与同样卷入右旋走滑变形的黄山超基性岩带相连。整个变形带实际上小角度斜切了康古尔蛇绿构造混杂岩带(图 6)。沿构造变形带的各类侵入岩体无论是黄山超基性岩带的超基性岩体还是各类花岗岩体均卷入不同程度的右旋走滑变形而呈现出不对称的透镜状形态。但由于变形温度条件较低,除了超基性岩体水解弱化发育构造片理外,花岗质岩石主要表现为间隔劈理,并没有出现晶内塑性变形,即这些岩体实际上是以相对刚性的大型残斑形式卷入以变形砂泥质岩石为强塑性变形带的康古尔右旋韧性剪切变形中。卷入变形带的花岗岩和超镁铁岩的锆石U-Pb年龄主体集中在280~270 Ma[159],反映右旋走滑韧性剪切变形发生在280~270 Ma之后。已有研究中报道康古尔右旋韧性剪切变形带内糜棱岩中获得(262.9±1.4)Ma~(242.8±1.5)Ma斜长石/全岩40Ar-39Ar年龄(全岩法加热过程中40Ar释放主峰判断为主要由黑云母、绢云母和钾长石所贡献)[161],其测年同位素封闭温度与变形温度大体相当,因此,该年龄区间大致代表晚期右旋韧性剪切变形时间。Wang对卷入变形带的侵入年龄为286~271 Ma的克孜尔塔格复式花岗岩的系列40Ar-39Ar年代学测试获得类似结果,其获得的(278.4±1.5) Ma~(272.2±1.5) Ma的角闪石40Ar-39Ar年龄代表岩体侵入冷却年龄,封闭温度与变形温度接近的黑云母40Ar-39Ar年龄((261±1)Ma~(253.9±2.3) Ma)应该代表右旋剪切变形的热重置,而获得的(239.5±3.5) Ma~(226.3±1.2) Ma的钾长石40Ar-39Ar年龄可能反映更晚期的热事件干扰。总结来看,近东西向康古尔右行韧性剪切变形时间应该在263~243 Ma之间的晚二叠世—早中三叠世。

280~270 Ma间是一个十分特殊的构造转折期。沿觉罗塔格山大量发育这一时期的侵入岩系统,并且呈现出酸性花岗岩与基性-超基性岩共存的双峰式特点,根据已有的测年资料,花岗岩年龄主要集中在289~276 Ma,基性-超基性岩年龄主要在280~270 Ma,岩石地球化学则普遍指示其后碰撞伸展环境,反映一强烈的陆内构造伸展期[70, 157, 161-168]

综上所述,本文将康古尔构造带晚古生代大地构造演化过程细化为:

(1) 石炭纪—早二叠世(至少315~294 Ma),在北天山主洋盆于晚泥盆世之前关闭的基础上重新裂解,并逐渐演化为具有陆间裂谷性质的康古尔有限洋盆;

(2) 早二叠世早期(约290~280 Ma),康古尔陆间裂谷关闭,洋壳物质与陆缘碎屑物质发生构造混杂,形成康古尔蛇绿构造混杂岩带,并导致区域上强烈的近南北向纯剪挤压变形;

(3) 早二叠世晚期(约280~270 Ma),康古尔构造带处于后碰撞陆内伸展环境,大量后碰撞双峰式岩浆侵入;

(4) 中晚二叠世—早中三叠世(263~243 Ma),康古尔构造带发生大规模右行转换压缩变形,形成康古尔右旋韧性剪切变形带。

5 东天山地区新元古代—古生代构造格架及构造演化 5.1 区域构造格架

经历了新元古代罗德尼亚超大陆裂解事件之后,东天山地区形成了“三陆夹两洋”的构造格局,自北向南依次为西伯利亚南缘的阿尔泰-图瓦-蒙古地块、阿尔曼泰洋、准噶尔-吐哈大洋高原性质的地块、北天山洋和中天山-塔里木克拉通。这一构造格架基本奠定了古亚洲洋在古生代的演化趋势,即被准噶尔-吐哈大洋高原隔开的两个分支洋盆分别向两侧的陆块之下俯冲,伴随着一系列的弧前增生、碰撞与弧后伸展过程,洋盆最终于早二叠世彻底闭合。

5.2 构造演化

传统的俯冲-增生模型中,东天山地区往往被认为是一系列古生代的岛弧向南增生的拼合地体[36]。然而,相对刚性、具少量前新元古代古老陆壳残片和0.8~0.55 Ga新生基底的准噶尔-吐哈地块、北天山洋盆以及康古尔洋盆体系涵义的重新界定,使得我们对东天山地区新元古代—古生代洋陆转换演化过程形成全新认识。基于研究最新进展,并综合已有有关资料,我们将东天山地区新元古代—古生代的演化历程总结如下(图 7)。

图 7 东天山地区新元古代—古生代构造演化示意图 Fig. 7 Tectonic evolution during Neoproterozoic-Paleozoic era in the East Tianshan Mountains

(1) 新元古代:罗德尼亚超大陆裂解导致西伯利亚南缘与中天山-塔里木地块分离,并形成具少量前新元古代古老陆壳残片的大洋高原。洋脊扩张使得小部分大洋高原从主体上分离,形成北天山洋内的微地块,而其主体则构成准噶尔-吐哈地块的雏形。伴随着洋盆的不断拉张,准噶尔-吐哈地块孤立于古亚洲洋之中,其北部和南部分别以阿尔曼太洋盆和北天山洋盆与阿尔泰-西伯利亚板块和中天山-塔里木板块分隔。

(2) 寒武纪—晚奥陶世:以准噶尔-吐哈地块为分隔,古亚洲洋的两个分支洋盆——阿尔曼太洋和北天山洋分别向北侧的西伯利亚南缘和南侧的中天山北缘俯冲。至中—晚奥陶世,北支阿尔曼太洋盆逐渐闭合,准噶尔-吐哈地块与西伯利板块南缘的阿尔泰-图瓦-蒙古地块发生碰撞拼合[22, 170]。而南部北天山洋盆发生双向俯冲,北向俯冲导致大南湖-哈尔里克山南麓一带发育新的奥陶纪岩浆弧[170-172],南向俯冲则在土屋北一带形成新的晚奥陶世岛弧岩浆系统。

(3) 志留纪:北天山洋持续双向俯冲。北部阿尔曼太洋已经闭合,准噶尔-吐哈地块北缘进入后碰撞伸展阶段[106]。由于北天山洋的持续北向俯冲导致北部准噶尔-吐哈地块沿卡拉麦里-莫钦乌拉一线发生弧后伸展裂解,并进一步扩张形成具有弧后盆地性质的卡拉麦里古洋盆[56],构成新的准噶尔-吐哈地块北部边界。南部土屋岛弧带(或微地块)于奥陶纪与志留纪之交也通过弧陆碰撞形式拼合到中天山地块北缘,这一弧陆碰撞使得后续志留—泥盆纪在北天山洋盆的南部陆缘开始接受来自中天山的碎屑物质。此外,志留纪期间,北天山洋盆的持续南向俯冲,使得中天山地块与塔里木板块分离,形成了南天山洋[85, 88, 92]

(4) 泥盆纪:准噶尔-吐哈地块北侧的卡拉麦里洋开始发生北向俯冲,在整个东准噶尔地区形成强烈的岛弧岩浆活动[38, 40-41],而南侧新的准噶尔-吐哈地块的北缘发育被动陆缘。与此同时,南部的北天山洋进入演化的最后阶段,双向俯冲消减作用持续到中泥盆世末,并于中—晚泥盆世之交闭合,导致准噶尔-吐哈地块与中天山的焊合。晚泥盆世晚期开始,准噶尔-吐哈地块的南部进入后碰撞伸展阶段,而此时的南天山洋仍处于扩张阶段。

(5) 石炭纪:卡拉麦里洋于晚泥盆世—早石炭世之交闭合[103],准噶尔-吐哈地块东北缘进入前陆盆地演化阶段[24, 57],并自西向东分别于早石炭世—晚石炭世中期进入后碰撞伸展阶段[57, 109]。与此同时,南天山洋进入俯冲消减阶段,其北向俯冲导致中天山地块为岩浆盆弧区,而以北的广大区域发生弧后伸展作用[74, 173]。受强烈的后造山和弧后的双重伸展作用影响,区域上形成一系列石炭纪的裂陷带,并于巴音沟—康古尔—苦水一带形成有限裂解的弧后洋盆。

(6) 二叠纪:大约290~280 Ma的早二叠世早期,南天山洋和康古尔有限洋盆闭合,广泛发育纯剪挤压型韧性变形,这一汇聚事件彻底结束了东天山的古洋盆演化历程,从此进入陆内演化。大约280~270 Ma的早二叠世晚期,整个区域上广泛发生后碰撞伸展的双峰式岩浆活动;263~243 Ma间的中晚二叠世—早中三叠世,区域上再次发生陆内挤压缩短变形,在吐哈盆地的北部哈尔里克山形成以口门子逆冲型韧性剪切带为代表的高应变带[174-175],南部则形成以康古尔右旋韧性剪切变形带为代表的陆内转换压缩变形。

6 结语

基于基础地质调查获得的新资料,对长期以来有关东天山新元古—古生代构造格架及构造演化的一些模糊认识进行了澄清。

(1) 准噶尔-吐哈地块为相对刚性、深部为0.8~0.55 Ga新生地壳但表层存在>1.0 Ga古老陆壳残片的具有大洋高原性质的统一块体。0.8~0.55 Ga是准噶尔-吐哈地块新生地壳的形成和生长的主要时期,是响应罗德尼亚超大陆裂解幔源物质通过底垫作用添加到当时的下地壳的产物,并可能逐渐演化为被新生洋盆环绕的大洋高原,其上的前新元古代的古老陆壳可能以系列残留陆壳碎块型式存在于大洋高原的表层。

准噶尔-吐哈地块的北界范围随时间而变化。北界在寒武—奥陶纪时期为阿尔曼太古洋盆,分隔着准噶尔-吐哈地块与西伯利亚板块。志留纪时期,由于阿尔曼太洋盆于晚奥陶世的闭合,而南部新的卡拉麦里洋盆于志留纪开始打开,卡拉麦里洋盆成为新的准噶尔-吐哈地块与北部西伯利亚板块的分隔界线。

(2) 具有显著不同板块分隔意义的北天山洋盆出现于晚新元古代—中泥盆世,是长期分隔准噶尔-吐哈地块与中天山-塔里木板块的主大洋。其洋内具大洋高原性质的土屋微地块于奥陶—志留纪之交拼合至中天山地块北缘,而主洋盆最终于中—晚泥盆世之交闭合。巴音沟—康古尔—苦水一带的蛇绿混杂岩带所代表的康古尔洋盆是叠加在早期已经缝合的大陆边缘体系之上重新打开的洋盆,其始现于石炭纪,闭合于早二叠世早期,是持续时间较短的“短命”有限小洋盆。

(3) 基于新资料所构建的东天山新元古代—古生代的构造演化新模型体现了以具有8~0.55亿年新生基底的相对刚性的准噶尔-吐哈地块与南、北两侧洋盆系统的洋陆复杂裂拼转换过程。大约290~280 Ma的早二叠世早期,随着南天山洋和康古尔有限洋盆闭合,东天山地区彻底结束了古洋盆演化历程,而转入陆内演化。代表康古尔古洋盆的康古尔蛇绿混杂岩带与康古尔右旋走滑韧性剪切变形带是两个不同阶段变形的强变形带,前者成型于约290~280 Ma的古洋盆闭合事件,后者形成于约263~243 Ma间的陆内转换压缩变形。

致谢: 文章是基于2014年以来东天山两轮1:5万区域地质调查的综合研究成果,凝结了所有参加项目工作人员的辛勤劳动,借此向所有参加项目工作的师生表示衷心感谢!感谢审稿人提出的建设性修改意见。谨以此文纪念李四光先生诞辰一百三十周年。

参考文献/References
[1]
JAHN B M, WU F Y, HONG D W. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 2000, 109(1): 5-20. DOI:10.1007/BF02719146
[2]
BUSLOV M M, SAPHONOVA I Y, WATANABE T, et al. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent[J]. Geosciences Journal, 2001, 5(3): 203-224. DOI:10.1007/BF02910304
[3]
WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. DOI:10.1144/0016-76492006-022
[4]
XIAO W J, HAN C M, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2-4): 102-117. DOI:10.1016/j.jseaes.2007.10.008
[5]
ENGÖR A M C, NATAL'IN B A, SUNAL G, et al. The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma ago[J]. Annual Review of Earth and Planetary Sciences, 2018, 46(1): 439-494. DOI:10.1146/annurev-earth-060313-054826
[6]
肖文交, 李继亮, 宋东方, 等. 增生型造山带结构解析与时空制约[J]. 地球科学, 2019, 44(5): 1661-1687.
XIAO Wenjiao, LI Jiliang, SONG Dongfang, et al. Structural analyses and spatio-temporal constraints of accretionary orogens[J]. Earth Science, 2019, 44(5): 1661-1687. (in Chinese with English abstract)
[7]
李文铅, 夏斌, 吴国干, 等. 新疆鄯善康古尔塔格蛇绿岩及其大地构造意义[J]. 岩石学报, 2005, 21(6): 1617-1632.
LI Wenqian, XIA Bin, WU Guogan, et al. Kangguertage ophiolite and tectornic significance, Shanshan, Xinjiang China[J]. Acta Petrologica Sinica, 2005, 21(6): 1617-1632. (in Chinese with English abstract)
[8]
李文铅, 马华东, 王冉, 等. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd-Sr同位素特征及构造意义[J]. 岩石学报, 2008, 24(4): 773-780.
LI Wenqian, MA Huadong, WANG Ran, et al. SHRIMP dating and Nd-Sr isotopic tracing of Kangguertage ophiolite in eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2008, 24(4): 773-780. (in Chinese with English abstract)
[9]
徐学义, 李向民, 马中平, 等. 北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J]. 地质学报, 2006, 80(8): 1168-1176.
XU Xueyi, LI Xiangmin, MA Zhongping, et al. LA-ICPMS zircon U-Pb dating of Gabbro from the Bayingou Ophiolite in the Northern Tianshan Mountains[J]. Acta Geologica Sinica, 2006, 80(8): 1168-1176. (in Chinese with English abstract)
[10]
DONG Y P, ZHANG G W, ZHOU D W, et al. Geology and geochemistry of the Bingdaban ophiolitic mélange in the boundary fault zone on the northern Central Tianshan Belt, and its tectonic implications[J]. Science in China Series D: Earth Sciences, 2007, 50(1): 17-24. DOI:10.1007/s11430-007-2071-8
[11]
胡朝斌, 廖群安, 樊光明, 等. 东准噶尔滴水泉地区发现洋中脊型蛇绿岩[J]. 科学通报, 2014, 59(22): 2213-2224.
HU Chaobin, LIAO Qun'an, FAN Guangming, et al. Discovery of MOR-type ophiolites from the Dishuiquan region, eastern Junggar[J]. China Science Bulletin, 2014, 59(22): 2213-2224. (in Chinese with English abstract)
[12]
XU X W, JIANG N, LI X H, et al. Spatial-temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar[J]. Journal of Asian Earth Sciences, 2015, 111: 470-491. DOI:10.1016/j.jseaes.2015.06.017
[13]
LUO J, XIAO W J, WAKABAYASHI J, et al. The Zhaheba ophiolite complex in Eastern Junggar (NW China): long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids[J]. Gondwana Research, 2017, 43: 17-40. DOI:10.1016/j.gr.2015.04.004
[14]
YE X T, ZHANG C L, ZOU H B, et al. Age and geochemistry of the Zhaheba ophiolite complex in eastern Junggar of the Central Asian Orogenic Belt (CAOB): implications for the accretion process of the Junggar terrane[J]. Geological Magazine, 2017, 154(3): 419-440. DOI:10.1017/S0016756816000042
[15]
JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1): 73-100. DOI:10.1144/GSL.SP.2004.226.01.05
[16]
YUAN C, SUN M, WILDE S, et al. Post-collisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off[J]. Lithos, 2010, 119(3-4): 269-288. DOI:10.1016/j.lithos.2010.07.004
[17]
XIA L Q, XU X Y, LI X M, et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers, 2012, 3(4): 445-471. DOI:10.1016/j.gsf.2011.12.011
[18]
CHEN X J, SHU L S, SANTOSH M, et al. Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: geochemistry, zircon U-Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia[J]. Lithos, 2013, 168-169: 48-66. DOI:10.1016/j.lithos.2012.10.006
[19]
ZHANG J J, WANG T, TONG Y, et al. Tracking deep ancient crustal components by xenocrystic/inherited zircons of Palaeozoic felsic igneous rocks from the Altai-East Junggar terrane and adjacent regions, western Central Asian Orogenic Belt and its tectonic significance[J]. International Geology Review, 2017, 59(16): 2021-2040. DOI:10.1080/00206814.2017.1308841
[20]
DU L, LONG X P, YUAN C, et al. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2018, 153: 139-153. DOI:10.1016/j.jseaes.2017.03.026
[21]
LONG X P, YUAN C, SUN M, et al. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: insights into subduction-accretion processes in the southern Central Asian Orogenic Belt[J]. Gondwana Research, 2012, 21(2-3): 637-653. DOI:10.1016/j.gr.2011.05.015
[22]
CHEN X J, SHU L S, SANTOSH M, et al. The provenance and tectonic affinity of the Paleozoic meta-sedimentary rocks in the Chinese Tianshan belt: New insights from detrital zircon U-Pb geochronology and Hf-isotope analysis[J]. Journal of Asian Earth Sciences, 2014, 94: 12-27. DOI:10.1016/j.jseaes.2014.07.024
[23]
HUANG B, FU D, KUSKY T M, et al. Sedimentary provenance in response to Carboniferous arc-basin evolution of East Junggar and North Tianshan belts in the southwestern Central Asian Orogenic Belt[J]. Tectonophysics, 2018, 722: 324-341. DOI:10.1016/j.tecto.2017.11.015
[24]
白建科, 陈隽璐, 唐卓, 等. 新疆准噶尔古生代洋盆闭合时限——来自卡拉麦里地区石炭纪碎屑锆石U-Pb年代学的约束[J]. 地质通报, 2018, 37(1): 26-38.
BAI Jianke, CHEN Juanlu, TANG Zhuo, et al. The closure time of Junggar Paleozoic oceanic basin: Evidence from Carboniferous detrital zircon U-Pb geochronology in Kalamaili area[J]. Geological Bulletin of China, 2018, 37(1): 26-38. (in Chinese with English abstract)
[25]
白建科, 陈隽璐, 朱小辉, 等. 准噶尔盆地东北缘卡拉麦里组物源区特征:碎屑岩地球化学及锆石U-Pb年代学的制约[J]. 地球科学, 2018, 43(12): 4411-4426.
BAI Jianke, CHEN Juanlu, ZHU Xiaohui, et al. Provenance characteristics of Kalamaili Formation in northeastern margin of Junggar Basin: Constraints of geochemistry and detrital zircon U-Pb geochronology[J]. Earth Science, 2018, 43(12): 4411-4426. (in Chinese with English abstract)
[26]
CHEN Z Y, XIAO W J, WINDLEY B F, et al. Composition, provenance, and tectonic setting of the Southern Kangurtag accretionary complex in the Eastern Tianshan, NW China: implications for the late Paleozoic evolution of the North Tianshan Ocean[J]. Tectonics, 2019. DOI:10.1029/2018TC005385
[27]
XU X W, WANG H L, LI P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 72: 33-62. DOI:10.1016/j.jseaes.2012.11.023
[28]
XU X W, LI X H, JIANG N, et al. Basement nature and origin of the Junggar terrane: New zircon U-Pb-Hf isotope evidence from Paleozoic rocks and their enclaves[J]. Gondwana Research, 2015, 28(1): 288-310. DOI:10.1016/j.gr.2014.03.011
[29]
HUANG B T, HE Z Y, ZHANG Z M, et al. Early Neoproterozoic granitic gneisses in the Chinese Eastern Tianshan: petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 113: 339-352. DOI:10.1016/j.jseaes.2014.08.021
[30]
HUANG Z Y, LONG X P, YUAN C, et al. Detrital zircons from Neoproterozoic sedimentary rocks in the Yili Block: Constraints on the affinity of microcontinents in the southern Central Asian Orogenic Belt[J]. Gondwana Research, 2016, 37: 39-52. DOI:10.1016/j.gr.2016.05.009
[31]
ZHOU J B, WILDE S A, ZHAO G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 76-93. DOI:10.1016/j.earscirev.2017.01.012
[32]
舒良树, 邓兴梁, 马绪宣. 中天山基底与塔里木克拉通的构造亲缘性[J]. 地球科学, 2019, 44(5): 1584-1601.
SHU Liangshu, DENG Xingliang, MA Xuxuan. Tectonic affinity between Central Tianshan Basement and Tarim Block Craton[J]. Earth Science, 2019, 44(5): 1584-1601. (in Chinese with English abstract)
[33]
WANG Z H, SUN S, LI J L, et al. Paleozoic tectonic evolution of the northern Xinjiang, China: geochemical and geochronological constraints from the ophiolites[J]. Tectonics, 2003, 22(2): 1014. DOI:10.1029/2002TC001396
[34]
李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3): 304-322.
LI Jinyi. Late Neoproterozoic and Paleozoic tectonic framework and evolution of eastern Xinjiang, NW China[J]. Geological Review, 2004, 50(3): 304-322. (in Chinese with English abstract)
[35]
XIAO W J, WINDLEY B F, BADARCH G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 2004, 161(3): 339-342. DOI:10.1144/0016-764903-165
[36]
XIAO W J, ZHANG L C, QIN K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. DOI:10.2475/ajs.304.4.370
[37]
朱志新, 李少贞, 李嵩龄. 东准噶尔纸房地区晚石炭世巴塔玛依内山组陆相火山-沉积体系特征[J]. 新疆地质, 2005, 23(1): 14-18.
ZHU Zhixin, LI Shaozhen, LI Songling. The characteristics of sedimentary system-continental facies volcano in later carboniferous Batamayi Group, Zhi-Fang region, East Jungger[J]. Xinjiang Geology, 2005, 23(1): 14-18. DOI:10.3969/j.issn.1000-8845.2005.01.004 (in Chinese with English abstract)
[38]
ZHANG Z C, ZHOU G, KUSKY T M, et al. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 2009, 16(2): 201-215. DOI:10.1016/j.gr.2009.03.004
[39]
LI D, HE D F, SANTOSH M, et al. Petrogenesis of Late Paleozoic volcanics from the Zhaheba depression, East Junggar: insights into collisional event in an accretionary orogen of Central Asia[J]. Lithos, 2014, 184-187: 167-193. DOI:10.1016/j.lithos.2013.10.003
[40]
LIANG P, CHEN H Y, HOLLINGS P, et al. Geochronology and geochemistry of igneous rocks from the Laoshankou district, north Xinjiang: Implications for the late Paleozoic tectonic evolution and metallogenesis of east Junggar[J]. Lithos, 2016, 266-267: 115-132. DOI:10.1016/j.lithos.2016.08.021
[41]
赵浩, 廖群安, 罗婷, 等. 东准噶尔南缘两套泥盆纪火山岩地球化学特征对比及其地质意义[J]. 地球科学, 2018, 43(2): 371-388.
ZHAO Hao, LIAO Qun'an, LUO Ting, et al. Geochemistry and geological implications of two sets of Devonian volcanic rocks in south margin of East Junggar[J]. Earth Sciences, 2018, 43(2): 371-388. (in Chinese with English abstract)
[42]
熊双才, 张征峰, 李广, 等. 东准噶尔老爷庙地区碱性花岗岩锆石U-Pb定年、地球化学及其地质意义[J]. 地质论评, 2019, 65(1): 221-231.
XIONG Shuangcai, ZHANG Zhengfeng, LI Guang, et al. Zircon U-Pb Dating, Geochemical characteristics of alkali-granites in Laoyemiao area, eastern Junggar, and geological significance[J]. Geological Review, 2019, 65(1): 221-231. (in Chinese with English abstract)
[43]
肖文交, WINDLEY B F, 阎全人, 等. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义[J]. 地质学报, 2006, 80(1): 32-37.
XIAO Wenjiao, WINDLEY B F, YAN Quanren, et al. SHRIMP zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications[J]. Acta Geologica Sinica, 2006, 80(1): 32-37. (in Chinese with English abstract)
[44]
张元元, 郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 2010, 26(2): 421-430.
ZHANG Yuanyuan, GUO Zhaojie. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection[J]. Acta Petrologica Sinica, 2010, 26(2): 421-430. (in Chinese with English abstract)
[45]
刘亚然, 简平, 张维, 等. 新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义[J]. 岩石学报, 2016, 32(2): 537-554.
LIU Yaran, JIAN Ping, ZHANG Wei, et al. Zircon SHRIMP U-Pb dating and O isotope of the Beitashan ophiolitic mélange in the East Junggar, Xinjiang, and its geological significance[J]. Acta Petrologica Sinica, 2016, 32(2): 537-554. (in Chinese with English abstract)
[46]
李锦轶, 肖序常, 汤耀庆, 等. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 1990, 36(4): 305-316.
LI Jinyi, XIAO Xuchang, TANG Yaoqing, et al. Main characteristics of Late Paleozoic plate tectonics in the southern part of East Junggar, Xinjiang[J]. Geological Review, 1990, 36(4): 305-316. (in Chinese with English abstract)
[47]
舒良树, 王玉净. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石[J]. 地质论评, 2003, 49(4): 408-412.
SHU Liangshu, WANG Yujing. Late Devonian-Early Carboniferous radiolarian fossils from siliceous rocks of the Kelameili ophiolite, Xinjiang[J]. Geological Review, 2003, 49(4): 408-412. (in Chinese with English abstract)
[48]
XU J F, CASTILLO P, CHEN F R, et al. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: implications for backarc mantle evolution[J]. Chemical Geology, 2003, 193(1-2): 137-154. DOI:10.1016/S0009-2541(02)00265-6
[49]
吴波, 何国琦, 吴泰然, 等. 新疆布尔根蛇绿混杂岩的发现及其大地构造意义[J]. 中国地质, 2006, 33(3): 476-486.
WU Bo, HE Guoqi, WU Tairan, et al. Discovery of the Buergen ophiolitic mélange belt in Xinjiang and its tectonic significance[J]. Geology in China, 2006, 33(3): 476-486. (in Chinese with English abstract)
[50]
WANG Y W, WANG J B, WANG L J, et al. The Tuerkubantao ophiolite mélange in Xinjiang, NW China: new evidence for the Erqis suture zone[J]. Geoscience Frontiers, 2012, 3(5): 587-602. DOI:10.1016/j.gsf.2012.02.002
[51]
HAN Y G, ZHAO G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. DOI:10.1016/j.earscirev.2017.09.012
[52]
李玮, 陈隽璐, 董云鹏, 等. 早古生代古亚洲洋俯冲记录:来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报, 2016, 32(2): 505-521.
LI Wei, CHEN Juanlu, DONG Yunpeng, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological and geochemical evidence from the Kalatag high-Mg andesites, East Tianshan[J]. Acta Petrologica Sinica, 2016, 32(2): 505-521. (in Chinese with English abstract)
[53]
MAO Q G, YU M J, XIAO W J, et al. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2018, 153: 365-378. DOI:10.1016/j.jseaes.2017.03.021
[54]
ZHANG Y Y, SUN M, YUAN C, et al. Alternating trench advance and retreat: Insights from Paleozoic magmatism in the eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37(7): 2142-2164. DOI:10.1029/2018TC005051
[55]
SUN Y, WANG J B, WANG Y W, et al. Ages and origins of granitoids from the Kalatag Cu cluster in Eastern Tianshan, NW China: Constraints on Ordovician-Devonian arc evolution and porphyry Cu fertility in the Southern Central Asian orogenic belt[J]. Lithos, 2019, 330-331: 55-73. DOI:10.1016/j.lithos.2019.02.002
[56]
李锦轶, 杨天南, 李亚萍, 等. 东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束[J]. 地质通报, 2009, 28(12): 1817-1826.
LI Jinyi, YANG Tiannan, LI Yaping, et al. Geological features of the Karamaili faulting belt, eastern Junggar region, Xinjiang, China and its constraints on the reconstruction of Late Paleozoic ocean-continental framework of the Central Asian region[J]. Geological Bulletin of China, 2009, 28(12): 1817-1826. (in Chinese with English abstract)
[57]
王国灿, 张孟, 张雄华, 等. 东天山北部古生代重大构造事件及其对中亚造山带演化的启示:基于1:5万板房沟幅和小柳沟幅地质调查新证据[J]. 中国地质, 2019, in press.
WANG Guocan, ZHANG Meng, ZHANG Xionghua, et al. Paleozoic significant tectonic events on the north part of the East Tianshan, Xinjiang, Northwest China, and its implication to the evolution of CAOB: new evidences from 1: 50000 geological survey of Banfanggou and Xiaoliugou Sheets[J]. Geology in China, 2019, in press. (in Chinese with English abstract)
[58]
马瑞士, 舒良树, 孙家齐. 东天山构造演化与成矿[M]. 北京: 地质出版社, 1997: 152-170.
MA Ruishi, SHU Liangshu, SUN Jiaqi. Tectonic evolution and metallogeny of eastern Tianshan Mountains[M]. Beijing: Geological Publishing House, 1997: 152-170. (in Chinese with English abstract)
[59]
顾连兴, 胡受奚, 于春水, 等. 东天山博格达造山带石炭纪火山岩及其形成地质环境[J]. 岩石学报, 2000, 16(3): 305-316.
GU Lianxing, HU Shouxi, YU Chunshui, et al. Carboniferous volcanites in the Bogda orogenic belt of eastern Tianshan: their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3): 305-316. (in Chinese with English abstract)
[60]
XIA L Q, XU X Y, XIA Z C, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. GSA Bulletin, 2004, 116(3-4): 419-433.
[61]
王良玉, 廖群安, 肖典, 等. 新疆哈尔里克早石炭世A型花岗岩的岩石成因及构造意义[J]. 地质力学学报, 2016, 22(4): 1032-1048.
WANG Liangyu, LIAO Qun'an, XIAO Dian, et al. Petrogenesis and tectonic significance of Early Carboniferous A-type grainte in Harlik, Xinjiang[J]. Journal of Geomechanics, 2016, 22(4): 1032-1048. (in Chinese with English abstract)
[62]
XIE W, LUO Z Y, XU Y G, et al. Petrogenesis and geochemistry of the Late Carboniferous rear-arc (or back-arc) pillow basaltic lava in the Bogda Mountains, Chinese North Tianshan[J]. Lithos, 2016, 244: 30-42. DOI:10.1016/j.lithos.2015.11.024
[63]
XIE W, XU Y G, CHEN Y B, et al. High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous[J]. Lithos, 2016, 256-257: 165-181. DOI:10.1016/j.lithos.2016.04.005
[64]
XIE W, XU Y G, LUO Z Y, et al. Petrogenesis and geodynamic implications of the Late Carboniferous felsic volcanics in the Bogda belt, Chinese Northern Tianshan[J]. Gondwana Research, 2016, 39: 165-179. DOI:10.1016/j.gr.2016.07.005
[65]
ZHANG Y Y, YUAN C, LONG X P, et al. Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: Evidence for arc rifting[J]. Gondwana Research, 2017, 43: 92-106. DOI:10.1016/j.gr.2016.02.004
[66]
WALI G, WANG B, CLUZEL D, et al. Carboniferous-Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2018, 153: 238-251. DOI:10.1016/j.jseaes.2017.07.045
[67]
HUANG G, NIU G Z, ZHANG Z W, et al. Discovery of ~4.0 Ga detrital zircons in the Aermantai ophiolitic mélange, East Junggar, northwest China[J]. Chinese Science Bulletin, 2013, 58(30): 3645-3663. DOI:10.1007/s11434-013-5842-y
[68]
李亚萍, 李锦轶, 孙桂华, 等. 准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据[J]. 岩石学报, 2007, 23(7): 1577-1590.
LI Yaping, LI Jinyi, SUN Guihua, et al. Basement of Junggar basin: evidence from detrital zircons in sandstone of previous Devonian Kalamaili formation[J]. Acta Petrologica Sinica, 2007, 23(7): 1577-1590. (in Chinese with English abstract)
[69]
张雄华, 黄兴, 陈继平, 等. 东天山觉罗塔格地区石炭纪火山-沉积岩地层序列及地质时代[J]. 地球科学, 2012, 37(6): 1306-1314.
ZHANG Xionghua, HUANG Xing, CHEN Jiping, et al. Stratigraphical sequence of Carboniferous marine volcanic-deposit rock and its geological age in Jueluotage area, eastern Tianshan[J]. Earth Science, 2012, 37(6): 1305-1314. (in Chinese with English abstract)
[70]
DU L, LONG X P, YUAN C, et al. Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions[J]. Lithos, 2018, 304-307: 230-244. DOI:10.1016/j.lithos.2018.02.010
[71]
HOU T, ZHANG Z C, SANTOSH M, et al. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China: constraints on the metallogenesis[J]. Ore Geology Reviews, 2014, 56: 487-502. DOI:10.1016/j.oregeorev.2013.03.008
[72]
LUO T, LIAO Q A, ZHANG X H, et al. Geochronology and geochemistry of Carboniferous metabasalts in eastern Tianshan, Central Asia: evidence of a back-arc basin[J]. International Geology Review, 2016, 58(6): 756-772. DOI:10.1080/00206814.2015.1114433
[73]
JIANG H J, HAN J S, CHEN H Y, et al. Intra-continental back-arc basin inversion and Late Carboniferous magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi magmatic suite[J]. Geoscience Frontiers, 2017, 8(6): 1447-1467. DOI:10.1016/j.gsf.2017.01.008
[74]
罗婷, 陈继平, 廖群安, 等. 东天山觉罗塔格构造带石炭纪弧后盆地——来自基性火山岩的证据[J]. 地球科学, 2019, in press.
LUO Ting, CHEN Jiping, LIAO Qun'an, et al. A Back-arc Basin in Eastern Tianshan, Central Asia: Evidence from Geochronology and Geochemistry of Carboniferous Basalts[J]. Earth Science, 2019, in press. (in Chinese with English abstract)
[75]
XIAO W J, WINDLEY B F, ALLEN M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1316-1341. DOI:10.1016/j.gr.2012.01.012
[76]
ZHAO L D, CHEN H Y, ZHANG L, Et al. The Late Paleozoic magmatic evolution of the Aqishan-Yamansu belt, Eastern Tianshan: constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of igneous rocks[J]. Journal of Asian Earth Sciences, 2018, 153: 170-192. DOI:10.1016/j.jseaes.2017.07.038
[77]
ZHAO L D, CHEN H Y, HOLLINGS P, et al. Late Paleozoic magmatism and metallogenesis in the Aqishan-Yamansu belt, Eastern Tianshan: Constraints from the Bailingshan intrusive complex[J]. Gondwana Research, 2019, 65: 68-85. DOI:10.1016/j.gr.2018.08.004
[78]
白建科, 刘池阳, 张少华, 等. 东天山吐哈盆地南缘企鹅山群玄武岩锆石U-Pb年代学, 地球化学及其对北天山洋闭合时限的约束[J]. 岩石学报, 2018, 34(10): 2995-3010.
BAI Jianke, LIU Chiyang, ZHANG Shaohua, et al. Zircon U-Pb geochronology and geochemistry of basalts from the Qi'eshan Group in the southern Turpan-Hami Basin, East Tianshan: Constraints on closure time of the North Tianshan Ocean[J]. Acta Petrologica Sinica, 2018, 34(10): 2995-3010. (in Chinese with English abstract)
[79]
董云鹏, 周鼎武, 张国伟, 等. 中天山北缘干沟蛇绿混杂岩带的地质地球化学[J]. 岩石学报, 2006, 22(1): 49-56.
DONG Yunpeng, ZHOU Dingwu, ZHANG Guowei, et al. Geology and geochemistry of the Gangou ophiolitic mélange at the northern margin of the Middle Tianshan Belt[J]. Acta Petrologica Sinica, 2006, 22(1): 49-56. (in Chinese with English abstract)
[80]
蒋宇翔, 李文亮, 王哲, 等. 哈密苦水蛇绿混杂岩带岩石化学、年代学特征及地质意义[J]. 矿产勘查, 2019, 10(3): 445-452.
JIANG Yuxiang, LI Wenliang, WANG Zhe, et al. Geochemical characteristics and age characteristics and geological significance of ophiolite in the Kushui ophiolite mélange belt, Hami area[J]. Mineral Exploration, 2019, 10(3): 445-452. (in Chinese with English abstract)
[81]
GAO J, WANG X S, KLEMD R, et al. Record of assembly and breakup of Rodinia in the Southwestern Altaids: evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen[J]. Journal of Asian Earth Sciences, 2015, 113: 173-193. DOI:10.1016/j.jseaes.2015.02.002
[82]
MA X X, SHU L S, SANTOSH M, et al. Detrital zircon U-Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: implications on Proterozoic supercontinent history[J]. Precambrian Research, 2012, 206-207: 1-16. DOI:10.1016/j.precamres.2012.02.015
[83]
MA X X, SHU L S, MEERT J G, et al. The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence[J]. Gondwana Research, 2014, 25(2): 797-819. DOI:10.1016/j.gr.2013.05.015
[84]
ZHANG X R, ZHAO G C, SUN M, et al. Tectonic evolution from subduction to arc-continent collision of the Junggar ocean: Constraints from U-Pb dating and Hf isotopes of detrital zircons from the North Tianshan belt, NW China[J]. GSA Bulletin, 2016, 128(3-4): 644-660. DOI:10.1130/B31230.1
[85]
DONG S L, LI Z, JIANG L. The Ordovician-Silurian tectonic evolution of the northeastern margin of the Tarim block, NW China: constraints from detrital zircon geochronological records[J]. Journal of Asian Earth Sciences, 2016, 122: 1-19. DOI:10.1016/j.jseaes.2016.03.002
[86]
HUANG Z Y, LONG X P, KRÖNER A, et al. Neoproterozoic granitic gneisses in the Chinese Central Tianshan Block: Implications for tectonic affinity and Precambrian crustal evolution[J]. Precambrian Research, 2015, 269: 73-89. DOI:10.1016/j.precamres.2015.08.005
[87]
ZHAO Z Y, ZHANG Z C, SANTOSH M, et al. Early Paleozoic magmatic record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2015, 28(1): 328-347. DOI:10.1016/j.gr.2014.04.007
[88]
HAN Y G, ZHAO G C, SUN M, et al. Paleozoic accretionary orogenesis in the Paleo-Asian Ocean: Insights from detrital zircons from Silurian to Carboniferous strata at the northwestern margin of the Tarim Craton[J]. Tectonics, 2015, 34(2): 334-351. DOI:10.1002/2014TC003668
[89]
LEI R X, WU C Z, CHI G X, et al. The Neoproterozoic Hongliujing A-type granite in Central Tianshan (NW China): LA-ICP-MS zircon U-Pb geochronology, geochemistry, Nd-Hf isotope and tectonic significance[J]. Journal of Asian Earth Sciences, 2013, 74: 142-154. DOI:10.1016/j.jseaes.2013.03.025
[90]
WANG X S, GAO J, KLEMD R, et al. Geochemistry and geochronology of the Precambrian high-grade metamorphic complex in the Southern Central Tianshan ophiolitic mélange, NW China[J]. Precambrian Research, 2014, 254: 129-148. DOI:10.1016/j.precamres.2014.08.017
[91]
WANG B, SHU L S, LIU H S, et al. First evidence for ca. 780 Ma intra-plate magmatism and its implications for Neoproterozoic rifting of the North Yili Block and tectonic origin of the continental blocks in SW of Central Asia[J]. Precambrian Research, 2014, 254: 258-272. DOI:10.1016/j.precamres.2014.09.005
[92]
WANG B, SHU L S, FAURE M, et al. Paleozoic tectonics of the southern Chinese Tianshan: insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China)[J]. Tectonophysics, 2011, 497(1-4): 85-104. DOI:10.1016/j.tecto.2010.11.004
[93]
毛启贵, 王京彬, 肖文交, 等. 东天山中天山构造带喀拉塔格地区早石炭世岛弧火山岩的厘定及其构造意义[J]. 地质学报, 2014, 88(10): 1790-1799.
MAO Qigui, WANG Jingbin, XIAO Wenjiao, et al. The discovery of low-carboniferous arc volcanic rocks and its tectonic signifance at the Kalatage area in the Central Tianshan, Eastern Tianshan Mountain, Xinjiang, NW China[J]. Acta Geologica Sinica, 2014, 88(10): 1790-1799. (in Chinese with English abstract)
[94]
龙灵利, 高俊, 熊贤明, 等. 南天山库勒湖蛇绿岩地球化学特征及其年龄[J]. 岩石学报, 2006, 22(1): 65-73.
LONG Lingli, GAO Jun, XIONG Xianming, et al. The geochemical characteristics and the age of the Kule Lake ophiolite in the southern Tianshan[J]. Acta Petrologica Sinica, 2006, 22(1): 65-73. (in Chinese with English abstract)
[95]
杨经绥, 徐向珍, 李天福, 等. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年:早古生代洋盆的证据[J]. 岩石学报, 2011, 27(1): 77-95.
YANG Jingsui, XU Xiangzhen, LI Tianfu, et al. U-Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic oceanic basin[J]. Acta Petrologica Sinica, 2011, 27(1): 77-95. (in Chinese with English abstract)
[96]
JIANG T, GAO J, KLEMD R, et al. Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: geological, geochemical and geochronological implications for the geodynamic setting[J]. Tectonophysics, 2014, 612-613: 106-127. DOI:10.1016/j.tecto.2013.11.038
[97]
董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37-44.
DONG Yunpeng, ZHOU Dingwu, ZHANG Guowei, et al. Tectonic setting of the Wuwamen ophiolite at the southern margin of Middle Tianshan Belt[J]. Acta Petrologica Sinica, 2005, 21(1): 37-44. (in Chinese with English abstract)
[98]
徐向珍, 杨经绥, 郭国林, 等. 新疆天山地区榆树沟-铜花山蛇绿岩特征和构造背景[J]. 岩石学报, 2011, 27(1): 96-120.
XU Xiangzhen, YANG Jingsui, GUO Guolin, et al. The Yushugou-Tonghuashan ophiolites in Tianshan, Xinjiang, and their tectonic setting[J]. Acta Petrologica Sinica, 2011, 27(1): 96-120. (in Chinese with English abstract)
[99]
牛晓露, 杨经绥, 刘飞, 等. 新疆中天山南缘乌瓦门地区蛇绿岩中超镁铁岩的成因:来自岩石矿物学和地球化学的证据[J]. 中国地质, 2015, 42(5): 1404-1420.
NIU Xiaolu, YANG Jingsui, LIU Fei, et al. Mineralogical and geochemical constraints on the origin of the ultramafic rocks from Wuwamen ophiolite on the southern margin of Middle Tianshan Mountains, Xinjiang[J]. Geology in China, 2015, 42(5): 1404-1420. (in Chinese with English abstract)
[100]
XIAO W J, HAN C M, LIU W, et al. How many sutures in the southern Central Asian orogenic belt: Insights from east Xinjiang-west Gansu (NW China)?[J]. Geoscience Frontiers, 2014, 5(4): 525-536. DOI:10.1016/j.gsf.2014.04.002
[101]
LI Y J, WANG Z M, WU H R, et al. Discovery of radiolarian fossils from the Aiketik group at the western end of the South Tianshan Mountains of China and its implications[J]. Acta Geologica Sinica-English Edition, 2002, 76(2): 146-154.
[102]
ZHANG L F, AI Y L, LI X P, et al. Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks[J]. Lithos, 2007, 96(1-2): 266-280. DOI:10.1016/j.lithos.2006.09.012
[103]
ZHANG Y Y, PE-PIPER G, PIPER D J W, et al. Early Carboniferous collision of the Kalamaili orogenic belt, North Xinjiang, and its implications: Evidence from molasse deposits[J]. Geological Society of America Bulletin, 2013, 125(5-6): 932-944. DOI:10.1130/B30779.1
[104]
李锦轶, 肖序常, 汤耀庆, 等. 新疆东准噶尔卡拉麦里地区古板块构造研究的新进展[J]. 科学通报, 1988, 33(10): 762-764.
LI Jinyi, XIAO Xuchang, TANG Yaoqing, et al. Research progress of Paleozoic plate tectonics in Karamaili belt, eastern Junggar of Xinjiang[J]. China Science Bulletin, 1988, 33(10): 762-764. (in Chinese)
[105]
XIAO W J, WINDLEY B F, YUAN C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3): 221-270. DOI:10.2475/03.2009.02
[106]
赵浩, 廖群安, 肖典, 等. 准噶尔地块东北缘志留纪碱性玄武岩的发现及其地质意义[J]. 岩石学报, 2018, 34(3): 586-600.
ZHAO Hao, LIAO Qun'an, XIAO Dian, et al. Discovery of the Early Silurian alkali basalt and its geological implications in northeastern Junggar, NW China[J]. Acta Petrologica Sinica, 2018, 34(3): 586-600. (in Chinese with English abstract)
[107]
ZHENG J P, SUN M, ZHAO G C, et al. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: implications for the formation and evolution of the basin basement[J]. Journal of Asian Earth Sciences, 2007, 29(5-6): 778-794. DOI:10.1016/j.jseaes.2006.05.004
[108]
SU Y P, ZHENG J P, GRIFFIN W L, et al. Geochemistry and geochronology of carboniferous volcanic rocks in the Eastern Junggar Terrane, NW China: Implication for a tectonic transition[J]. Gondwana Research, 2012, 22(3-4): 1009-1029. DOI:10.1016/j.gr.2012.01.004
[109]
ZHANG Y Y, GUO Z J, PE-PIPER G, et al. Geochemistry and petrogenesis of Early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process[J]. Gondwana Research, 2015, 28(4): 1466-1481. DOI:10.1016/j.gr.2014.08.018
[110]
LUO T, LIAO Q A, CHEN J P, et al. A record of post-collisional transition: evidence from geochronology and geochemistry of Palaeozoic volcanic rocks in the eastern Junggar, Central Asia[J]. International Geology Review, 2017, 59(10): 1256-1275. DOI:10.1080/00206814.2016.1160800
[111]
SONG P, WANG T, TONG Y, et al. Contrasting deep crustal compositions between the Altai and East Junggar orogens, SW Central Asian Orogenic Belt: Evidence from zircon Hf isotopic mapping[J]. Lithos, 2019, 328-329: 297-311. DOI:10.1016/j.lithos.2018.12.039
[112]
ZHANG Z C, KANG J L, KUSKY T, et al. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup[J]. Precambrian Research, 2012, 220-221: 158-176. DOI:10.1016/j.precamres.2012.08.002
[113]
LIKHANOV I I, SANTOSH M. Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent[J]. Precambrian Research, 2017, 300: 315-331. DOI:10.1016/j.precamres.2017.08.019
[114]
DOBRETSOV N L, BUSLOV M M, VERNIKOVSKY V A. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: implications to the break-up of Rodinia[J]. Gondwana Research, 2003, 6(2): 143-159. DOI:10.1016/S1342-937X(05)70966-7
[115]
XU B, JIAN P, ZHENG H F, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations[J]. Precambrian Research, 2005, 136(2): 107-123. DOI:10.1016/j.precamres.2004.09.007
[116]
NOZHKIN A D, KACHEVSKⅡ L K, DMITRIEVA N V. The Late Neoproterozoic rift-related metarhyolite-basalt association of the Glushikha trough (Yenisei Ridge): petrogeochemical composition, age, and formation conditions[J]. Russian Geology and Geophysics, 2013, 54(1): 44-54. DOI:10.1016/j.rgg.2012.12.004
[117]
ZHANG C L, ZOU H B, LI H K, et al. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research, 2013, 23(4): 1306-1315. DOI:10.1016/j.gr.2012.05.009
[118]
LIKHANOV I I, SANTOSH M. A-type granites in the western margin of the Siberian Craton: Implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia[J]. Precambrian Research, 2019, 328: 128-145. DOI:10.1016/j.precamres.2019.04.018
[119]
STEIN M, GOLDSTEIN S L. From plume head to continental lithosphere in the Arabian-Nubian shield[J]. Nature, 1996, 382(6594): 773-778. DOI:10.1038/382773a0
[120]
INGLE S, WEIS D, SCOATES J S, et al. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwanan margins[J]. Earth and Planetary Science Letters, 2002, 197(1-2): 35-50. DOI:10.1016/S0012-821X(02)00473-9
[121]
HARGROVE U S, STERN R J, KIMURA J I, et al. How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi'r Umq suture zone, Saudi Arabia[J]. Earth and Planetary Science Letters, 2006, 252(3-4): 308-326. DOI:10.1016/j.epsl.2006.10.002
[122]
TORSVIK T H, AMUNDSEN H E F, TRØNNES R G, et al. Continental crust beneath southeast Iceland[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): E1818-E1827. DOI:10.1073/pnas.1423099112
[123]
OLIEROOK H K H, JOURDAN F, MERLE R E, et al. Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume?[J]. Earth and Planetary Science Letters, 2016, 440: 20-32. DOI:10.1016/j.epsl.2016.02.008
[124]
FLOYD P A. Geochemical features of intraplate oceanic plateau basalts[J]. Geological Society, London, Special Publications, 1989, 42(1): 215-230. DOI:10.1144/GSL.SP.1989.042.01.14
[125]
陈万峰, 王金荣, 张旗, 等. 洋岛和洋底高原玄武岩数据挖掘:地球化学特征及其与MORB的对比[J]. 地质学报, 2017, 91(11): 2443-2455.
CHEN Wanfeng, WANG Jinrong, ZHANG Qi, et al. Data mining of ocean island basalt and ocean plateau basalt: geochemical characteristics and comparison with MORB[J]. Acta Geologica Sinica, 2017, 91(11): 2443-2455. DOI:10.3969/j.issn.0001-5717.2017.11.005 (in Chinese with English abstract)
[126]
KERR A C, MAHONEY J J. Oceanic plateaus: Problematic plumes, potential paradigms[J]. Chemical Geology, 2007, 241(3-4): 332-353. DOI:10.1016/j.chemgeo.2007.01.019
[127]
KERR A C. Oceanic plateaus[M]//HOLLAND H, TUREKIAN K. Treatise on Geochemistry: Vol. 4: The Crust. 2nd ed. Amsterdam: Elsevier, 2014: 631-667.
[128]
INGLE S, WEIS D, FREY F A. Indian continental crust recovered from Elan Bank, Kerguelen plateau (ODP Leg 183, site 1137)[J]. Journal of Petrology, 2002, 43(7): 1241-1257. DOI:10.1093/petrology/43.7.1241
[129]
NOHDA S, WASSERBURG G J. Nd and Sr isotopic study of volcanic rocks from Japan[J]. Earth and Planetary Science Letters, 1981, 52(2): 264-276. DOI:10.1016/0012-821X(81)90181-3
[130]
ISHIZAKA K, CARLSON R W. Nd-Sr systematics of the Setouchi volcanic rocks, southwest Japan: a clue to the origin of orogenic andesite[J]. Earth and Planetary Science Letters, 1983, 64(3): 327-340. DOI:10.1016/0012-821X(83)90094-8
[131]
FREY F A, COFFIN M F, WALLACE P J, et al. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean[J]. Earth and Planetary Science Letters, 2000, 176(1): 73-89. DOI:10.1016/S0012-821X(99)00315-5
[132]
FREY F A, WEIS D, BORISOVA A Y U, et al. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: new perspectives from ODP Leg 120 sites[J]. Journal of Petrology, 2002, 43(7): 1207-1239. DOI:10.1093/petrology/43.7.1207
[133]
WHITE R V, TARNEY J, KERR A C, et al. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust[J]. Lithos, 1999, 46(1): 43-68. DOI:10.1016/S0024-4937(98)00061-9
[134]
陆鹿, 严立龙, 李秋环, 等. 洋底高原及其对地球系统意义研究综述[J]. 岩石学报, 2016, 32(6): 1851-1876.
LU Lu, YAN Lilong, LI Qiuhuan, et al. Oceanic plateau and its significances on the Earth system: A review[J]. Acta Petrologica Sinica, 2016, 32(6): 1851-1876. (in Chinese with English abstract)
[135]
KUSKY T, MOONEY W. Is the Ordos Basin floored by a trapped oceanic plateau?[J]. Earth and Planetary Science Letters, 2015, 429: 197-204. DOI:10.1016/j.epsl.2015.07.069
[136]
KERR A C, TARNEY J, NIVIA A, et al. The internal structure of oceanic plateaus: Inferences from obducted Cretaceous terranes in western Colombia and the Caribbean[J]. Tectonophysics, 1998, 292(3-4): 173-188. DOI:10.1016/S0040-1951(98)00067-5
[137]
陈希节, 舒良树, 马绪宣. 新疆尾亚蛇绿混杂岩与镁铁质麻粒岩地球化学特征及构造意义[J]. 高校地质学报, 2012, 18(4): 661-675.
CHEN Xijie, SHU Liangshu, MA Xuxuan. Geochemical features and tectonic significances of Weiya ophiolitic mélange and mafic granulite, Xinjiang[J]. Geological Journal of China Universities, 2012, 18(4): 661-675. (in Chinese with English abstract)
[138]
舍建忠, 杨万志, 屈迅, 等. 东天山大草滩北镁铁超镁铁岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 2017, 36(1): 82-91.
SHE Jianzhong, YANG Wanzhi, QU Xun, et al. Geochemistry and zircon U-Pb dating of the Dacaotanbei Mafic-Ultramafic complex, Eastern Tianshan and its geological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1): 82-91. (in Chinese with English abstract)
[139]
肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992: 1-169.
XIAO Xuchang, TANG Yaoqing, FENG Yiming, et al. Tectonic evolution of northern Xinjiang and its adjacent regions[M]. Beijing: Geological Publishing House, 1992: 1-169. (in Chinese with English abstract)
[140]
LONG X P, SUN M, YUAN C, et al. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt[J]. Tectonics, 2007, 26(5): TC5015. DOI:10.1029/2007TC002128
[141]
LONG X P, YUAN C, SUN M, et al. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution[J]. Tectonophysics, 2010, 480(1-4): 213-231. DOI:10.1016/j.tecto.2009.10.013
[142]
肖兵, 陈华勇, 王云峰, 等. 东天山土屋延东铜矿矿区晚志留世岩体的发现及构造意义[J]. 地学前缘, 2015, 22(6): 251-266.
XIAO Bing, CHEN Huayong, WANG Yunfeng, et al. Discovery of the Late Silurian granodiorite and its tectonic significance in the Tuwu-Yandong porphyry copper deposits, Dananhu-Tousuquan island arc, Eastern Tianshan[J]. Earth Science Frontiers, 2015, 22(6): 251-266. (in Chinese with English abstract)
[143]
ZHANG D Y, ZHOU T F, YUAN F, et al. Geochemical and isotopic constraints on the genesis of the Jueluotage native copper mineralized basalt, Eastern Tianshan, Northwest China[J]. Journal of Asian Earth Sciences, 2013, 73: 317-333. DOI:10.1016/j.jseaes.2013.04.043
[144]
DU L, LONG X P, YUAN C, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318-319: 47-59. DOI:10.1016/j.lithos.2018.08.006
[145]
朱宝清, 冯益民, 杨军录, 等. 新疆中天山干沟一带蛇绿混杂岩和志留纪前陆盆地的发现及其意义[J]. 新疆地质, 2002, 20(4): 326-330.
ZHU Baoqing, FENG Yimin, YANG Junlu, et al. Discovery of ophiolite mélange and Silurian foreland basin at Gangou of Tokxun, Xinjiang and their tectonic significance[J]. Xinjiang Geology, 2002, 20(4): 326-330. (in Chinese with English abstract)
[146]
新疆维吾尔自治区地质调查院.新疆东天山K46C002002(五堡幅)1: 25万地质图及区域地质调查报告[R].乌鲁木齐: 新疆维吾尔自治区地质调查院, 2003.
Xinjiang Institution Geological Survey. Xinjiang East Tianshan K46C002002 (Wupu unit) 1: 250000 geological map and regional geological survey report[R]. Urumqi, 2003. (in Chinese)
[147]
苏养正. 论图瓦贝Tuvaella的时空分布和生态环境[J]. 古生物学报, 1981, 20(6): 567-576.
SU Yangzheng. On the geological and geographical distribution ofTuvaella with reference to its habitat[J]. Acta Palaeontologica Sinica, 1981, 20(6): 567-576. (in Chinese with English abstract)
[148]
张梓歆, 戎嘉余, 邸巧玲. 新疆巴里坤地区志留纪的大型图瓦贝组合[J]. 古生物学报, 1983, 22(3): 278-294.
ZHANG Zixin, RONG Jiayu, DI Qiaoling. Silurian Tuvaella gigantea faunule (Brachiopoda) of the Barkol area, northeastern Xinjiang[J]. Acta Palaeontologica Sinica, 1983, 22(3): 278-294. (in Chinese with English abstract)
[149]
廖卫华. 中国泥盆纪珊瑚的生物地理区系[J]. 地层学杂, 1993, 17(4): 277-280.
LIAO Weihua. Biogeographic provinces ofthe Devonian corals in China[J]. Journal of Stratigraphy, 1993, 17(4): 277-280. (in Chinese with English abstract)
[150]
孟勇, 张欣, 王凯, 等. 新疆哈密东部早泥盆世生物地层研究[J]. 地层学杂志, 2013, 37(4): 505-512.
MENG Yong, ZHANG Xin, WANG Kai, et al. Biostratigraphic study on the Early Devonian in eastern Hami, Xinjiang[J]. Journal of Stratigraphy, 2013, 37(4): 505-512. (in Chinese with English abstract)
[151]
张孟, 郑飞, 南玲玲, 等. 新疆哈密地区早泥盆世珊瑚动物群及其地质意义[J]. 地质通报, 2018, 37(10): 1789-1797.
ZHANG Meng, ZHENG Fei, NAN Lingling, et al. Early Devonian coral fauna from Hami area of Xinjiang and their geological significance[J]. GeologicalBulletin of China, 2018, 37(10): 1789-1797. (in Chinese with English abstract)
[152]
廖卫华, 蔡土赐. 新疆北部泥盆纪四射珊瑚组合序列[J]. 古生物学报, 1987, 26(6): 689-707.
LIAO Weihua, CAI Tuci. Sequence of Devonian rugose coral assemblages from northern Xinjiang[J]. Acta Palaeontologica Sinica, 1987, 26(6): 689-707. (in Chinese with English abstract)
[153]
SHI G R. Tectonobiogeography: deciphering tectonic history from distribution of fossils, as exemplified by the Permian marine biogeography of East and SE Asia[C]//XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, Netherlands: Universiteit Utrecht, 2003: 502-504.
[154]
WANG X D, LIN W, SHEN S Z, et al. Early Permian rugose coral Cyathaxonia faunas from the Sibumasu terrane (Southeast Asia) and the southern Sydney Basin (Southeast Australia): Paleontology and paleobiogeography[J]. Gondwana Research, 2013, 24(1): 185-191. DOI:10.1016/j.gr.2012.08.026
[155]
舍建忠, 冯长丽, 邸晓辰, 等. 东天山觉罗塔格构造带梧桐窝子组岩石化学特征及意义[J]. 西部探矿工程, 2016, 28(6): 77-81.
SHE Jianzhong, FENG Changli, DI Xiaocheng, et al. Petrochemical characteristics and significance of Wutongwozi Formation in Jueluotage tectonic belt in the East Tianshan[J]. West-China Exploration Engineering, 2016, 28(6): 77-81. (in Chinese with English abstract)
[156]
李永军, 杜志刚, 胡克亮, 等. 东天山库姆塔格沙垄地区企鹅山群的解体及岩石地层单位厘定[J]. 地球科学-中国地质大学学报, 2008, 33(4): 458-464.
LI Yongjun, DU Zhigang, HU Keliang, et al. On disintegration of Qi'eshan group and its definition of lithostratigraphic units from Kumutag sand-ridge area in the eastern Tianshan[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(4): 458-464. DOI:10.3321/j.issn:1000-2383.2008.04.003 (in Chinese with English abstract)
[157]
陈文, 孙枢, 张彦, 等. 新疆东天山秋格明塔什—黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 2005, 79(6): 790-804.
CHEN Wen, SUN Shu, ZHANG Yan, et al. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in east Tianshan, Xinjiang, NW China[J]. Acta Geologica Sinica, 2005, 79(6): 790-804. (in Chinese with English abstract)
[158]
西安地质矿产研究所. 1: 100万中国天山及邻区地质图及说明书[R].北京: 地质出版社, 2007.
Xi'an Institute of Geology and Mineral Resources. 1: 1 million geological maps and specifications of China's Tianshan and adjacent areas[R]. Beijing: Geological Publishing House, 2007. (in Chinese)
[159]
WANG B, CLUZEL D, JAHN B M, et al. Late Paleozoic pre- and syn-kinematic plutons of the Kangguer-Huangshan Shear zone: Inference on the tectonic evolution of the eastern Chinese north Tianshan[J]. American Journal of Science, 2014, 314(1): 43-79. DOI:10.2475/01.2014.02
[160]
WANG Y, LI J Y, SUN G H. Postcollisional eastward extrusion and tectonic exhumation along the eastern Tianshan Orogen, Central Asia: Constraints from dextral strike-slip motion and 40Ar/39Ar geochronological evidence[J]. The Journal of Geology, 2008, 116(6): 599-618. DOI:10.1086/591993
[161]
HAN B F, GUO Z J, ZHANG Z C, et al. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin, 2010, 122(3-4): 627-640. DOI:10.1130/B26491.1
[162]
SONG X Y, XIE W, DENG Y F, et al. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China[J]. Lithos, 2011, 127(1-2): 128-143. DOI:10.1016/j.lithos.2011.08.011
[163]
TANG G J, WANG Q, WYMAN D A, et al. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting[J]. Lithos, 2010, 119(3-4): 393-411. DOI:10.1016/j.lithos.2010.07.010
[164]
TANG J H, GU L X, ZHANG Z Z, et al. Peraluminous granite in Huangshan-Jingerquan area of eastern Tianshan: Geochemistry, mineralogy and geochronology[J]. Acta Petrologica Sinica, 2008, 24(5): 921-946.
[165]
ZHANG D Y, ZHOU T F, YUAN F, et al. Genesis of Permian granites along the Kangguer Shear Zone, Jueluotage area, Northwest China: Geological and geochemical evidence[J]. Lithos, 2014, 198-199: 141-152. DOI:10.1016/j.lithos.2014.03.023
[166]
ZHANG X R, ZHAO G C, EIZENHÖFER P R, et al. Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the Eastern Tianshan, NW China: Insights from geochronology and geochemistry of mafic-intermediate intrusions[J]. Lithos, 2016, 256-257: 269-281. DOI:10.1016/j.lithos.2016.04.006
[167]
ZHOU M F, MICHAEL L C, YANG Z X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209(3-4): 233-257. DOI:10.1016/j.chemgeo.2004.05.005
[168]
夏祖春, 徐学义, 夏林圻, 等. 天山石炭-二叠纪后碰撞花岗质岩石地球化学研究[J]. 西北地质, 2005, 38(1): 1-14.
XIA Zuchun, XU Xueyi, XIA Linqi, et al. Geochemistry of the Carboniferous-Permian post-collisional granitic rocks from Tianshan[J]. Northwestern Geology, 2005, 38(1): 1-14. (in Chinese with English abstract)
[169]
朱彦菲, 木合塔尔·扎日, 赵同阳, 等. 新疆阿尔泰山西段喀纳斯地区奥陶纪火山岩锆石U-Pb年龄和地球化学特征[J]. 中国地质, 2018, 45(3): 469-482.
ZHU Yanfei, MU Hetaer zhari, ZHAO Tongyang, et al. Zircon U-Pb age and geochemical characteristics of Ordovician volcanic rocks from Kanasi area in Western Altay Mountains, Xinjiang[J]. Geology in China, 2018, 45(3): 469-482. (in Chinese with English abstract)
[170]
马星华, 陈斌, 王超, 等. 早古生代古亚洲洋俯冲作用:来自新疆哈尔里克侵入岩的锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素证据[J]. 岩石学报, 2015, 31(1): 89-104.
MA Xinghua, CHEN Bin, WANG Chao, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb Geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(1): 89-104. (in Chinese with English abstract)
[171]
李江涛, 何学锋, 刘亮, 等. 新疆东天山哈尔里克奥陶纪的构造属性:来自火山岩LA-ICP-MS锆石U-Pb年代学与地球化学的制约[J]. 现代地质, 2017, 31(3): 460-473.
LI Jiangtao, HE Xuefeng, LIU Liang, et al. Ordovician tectonic evolution of Harlik in Eastern Tianshan of Xinjiang: Constraints from LA-ICP-MS zircon U-Pb geochronology and geochemistry of volcanic rocks[J]. Geoscience, 2017, 31(3): 460-473. (in Chinese with English abstract)
[172]
SUN Y, WANG J B, LI Y C, et al. Recognition of Late Ordovician Yudai porphyry Cu (Au, Mo) mineralization in the Kalatag district, Eastern Tianshan terrane, NW China: Constraints from geology, geochronology, and petrology[J]. Ore Geology Reviews, 2018, 100: 220-236. DOI:10.1016/j.oregeorev.2017.07.011
[173]
SU W B, CAI K D, SUN M, et al. Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: Insight from temporal-spatial character, petrogenesis and tectonic significance[J]. Lithos, 2018, 310-311: 241-254. DOI:10.1016/j.lithos.2018.04.012
[174]
查雁鸿, 王国灿, 申添毅, 等. 新疆哈尔里克山口门子韧性剪切带变形期次及年代学研究[J]. 大地构造与成矿, 2019, in press.
ZHA Yanhong, WANG Guocan, SHEN Tianyi, et al. Geochronology and deformation stages of Koumenzi ductile shear zone in Harlik Mountain, Xinjiang Province[J]. Geotectonica et Metallogenia, 2019, in press. (in Chinese with English abstract)
[175]
孙桂华, 李锦轶, 杨天南, 等. 天山造山带二叠纪后碰撞南北向挤压变形:以哈尔里克山北坡口门子逆冲型韧性剪切带为例[J]. 岩石学报, 2006, 22(5): 1359-1368.
SUN Guihua, LI Jinyi, YANG Tiannan, et al. Permian post-collisional NS-compression deformation in Tianshan orogen: example from Koumenzi ductile shear zone of thrusting-type in northern slope of Harlik mountains[J]. Acta Petrologica Sinica, 2006, 22(5): 1359-1368. (in Chinese with English abstract)