地质力学学报  2019, Vol. 25 Issue (5): 920-931
引用本文
张拴宏, 裴军令, 胡国辉, 张琪琪, 税国豪, 赵越. 大火成岩省与大规模黑色页岩沉积的成因联系及其意义[J]. 地质力学学报, 2019, 25(5): 920-931.
ZHANG Shuanhong, PEI Junling, HU Guohui, ZHANG Qiqi, SHUI Guohao, ZHAO Yue. GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS[J]. Journal of Geomechanics, 2019, 25(5): 920-931.
大火成岩省与大规模黑色页岩沉积的成因联系及其意义
张拴宏1,2 , 裴军令1,2 , 胡国辉1,2 , 张琪琪1,2 , 税国豪1,2 , 赵越1,2     
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 自然资源部古地磁与古构造重建重点实验室, 北京 100081
摘要:大火成岩省对全球性大气-海洋环境的巨变及生物灭绝有非常重要的影响。已有研究结果表明,显生宙(即寒武纪以来)大火成岩省与全球大洋缺氧与生物灭绝有明显的成因联系,显生宙国际地质年代表中多个金钉子均与以大火成岩省、黑色页岩及生物灭绝为代表的全球性地质事件相对应。但由于对前寒武纪,特别是"地球中年期"(18~8亿年,"枯燥的10亿年")大气氧浓度、海洋的氧化-还原状态及生物门类及演化认识的局限性,关于前寒武纪大火成岩省与环境的影响及其与黑色页岩沉积的成因联系一直很不清楚。通过对全球哥伦比亚(奴那)超大陆中约13.8亿年全球性大火成岩省及黑色页岩沉积时空分布的研究,发现这些大火成岩省及黑色页岩的分布有明显的规律。约13.8亿年大火成岩省广泛分布在北美、格陵兰、西伯利亚、波罗地、卡拉哈里、刚果、西非、亚马逊、南极及西澳大利亚等大陆上;而同期的黑色页岩在华北及北澳大利亚克拉通广泛分布,在西伯利亚、巴西及印度等克拉通也有分布。根据这些黑色页岩在超大陆重建图中的空间分布,提出了哥伦比亚(奴那)超大陆中这些广泛分布的约13.8亿年黑色页岩可能沉积于连通的大型海相盆地,而不是以往所认为的局部封闭的小盆地。通过约13.8亿年大火成岩省与黑色页岩内火山灰(斑脱岩)年龄的对比,进一步提出约13.8亿年存在一次与全球性大火成岩省有关的大洋缺氧事件,以此期大火成岩省与黑色页岩为代表的全球性地质事件为中元古代盖层系与延展系提供了精确的界限年龄为1383 Ma。初步的研究结果还显示,"地球中年期"可能还有多期的大火成岩省与黑色页岩沉积有时空联系,有望为晚前寒武纪地质年代表划分提供新的事件约束。
关键词大火成岩省    黑色页岩沉积    大洋缺氧事件    地质年代表划分    
DOI10.12090/j.issn.1006-6616.2019.25.05.075     文章编号:1006-6616(2019)05-0920-12
GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS
ZHANG Shuanhong1,2 , PEI Junling1,2 , HU Guohui1,2 , ZHANG Qiqi1,2 , SHUI Guohao1,2 , ZHAO Yue1,2     
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China
Abstract: Large igneous provinces (LIPs) have a significant influence on global climate changes and mass extinction events. Previous results show that some of the Global Boundary Stratotype Section and Points (GSSPs) in the Phanerozoic international geologic time scale are corresponding to the coeval global-scale LIPs, mass extinction events and/or ocean anoxic events (OAEs) represented by black shales. However, due to limited knowledge of atmospheric oxygen concentrations, ocean redox conditions and early fossils during the Meso-Neoproterozoic Era prior to the Ediacaran period, little is known on the climate and environmental effects of LIPs and link between LIPs and black shales during a billion years in "Earth's Middle Age" (or "Boring Billion") from 1800 Ma to 800 Ma. Recent results on global distribution of the~1380 Ma LIPs and black shales indicate a temporal and genetic link between the~1380 Ma LIPs and black shales in the Columbia (Nuna) supercontinent. The~1380 Ma LIPs are widely distributed in Baltica, North America, Greenland, Siberia, Kalahari, Congo, West Africa, Amazonia, East Antarctica and West Australia; the coeval black shales have been identified in North China and Northern Australia Graton, and probably in Siberia, Brazil and India Cratons. We proposed that the~1380 Ma black shales were deposited in an and/or several large marine basins, not some restricted basins as previously regarded. Comparisons of the baddeleyite/zircon U-Pb ages of~1380 Ma LIPs and zircon U-Pb ages of tuffs from the black shales within the Xiamaling Formation indicate that global deposition of the~1380 Ma black shales are related to an oceanic anoxic event induced by environment effects of the~1380 Ma LIPs, and the coeval black shales and LIPs provide a robust natural marker for the Calymmian-Ectasian boundary at 1383 Ma. Preliminary results on global distribution of other Meso-Neoproterozoic LIPs and black shales suggest that several other stages of LIPs in "Earth's Middle Age" are correlated with coeval black shales and can potentially provide more natural markers for the Meso-Neoproterozoic geological time scale.
Key words: large igneous provinces (LIPs)    black shale sediments    oceanic anoxic events (OAEs)    subdivision of geologic time scale    
0 引言

大火成岩省(large igneous provinces, LIPs)指的是在相对较短的时期内(一般为几个百万年)形成的规模宏大(面积>10×104 km2,体积>10×104 km3),并且以板内基性岩为主的幔源岩浆活动[1]。因为是地质历史上发生的极端地质事件,大火成岩省的形成通常与全球性环境巨变及生物灭绝、大陆裂解及多种类型的金属矿床密切相关,一直是国际地学界关注的重要前缘科学问题之一[1-3]。大火成岩省喷发或侵入过程中释放的气体、火山灰及其它流体对大气及海洋环境有显著的影响,从而导致了全球性环境巨变及大规模生物灭绝[2, 4-13]。显生宙以来大火成岩省对全球环境的影响及其与大规模生物灭绝的关系已经成为国际地球科学领域最为重要的热点及前缘科学问题之一[3, 4-5, 10-23]

黑色页岩是一类缺氧还原环境下沉积的富含有机质的特殊岩系,地质历史上发育的多次大规模大洋缺氧事件(oceanic anoxic events, 简称OAEs)都伴随有巨量的黑色页岩沉积[24-25]。大规模的黑色页岩系的形成通常与重要的全球性地质事件(如大火成岩省、大洋缺氧事件、生物灭绝等)密切相关,因此有重要的古环境及古构造指示意义[10, 26-28]。另外,黑色页岩也是全球页岩气勘探的主要目标[29],对于全球页岩气的勘探及评价具有重要意义。此外黑色页岩中还富含有色金属元素(Pb、Zn、Cu、Sb等)、重金属元素(Au、Ag、Pt、Pd等)、稀有元素(Ⅴ、Mo、W、Hg等)、分散元素(Ge、Re、Se、B、Cd、Tl等)、放射性元素(U、Ra等)和稀土元素等战略性矿产资源,具有重要的经济价值。

1 显生宙大火成岩省与黑色页岩的成因联系及在地层断代中的意义

早期的研究工作一般认为富含有机质的黑色泥页岩沉积于封闭的沉积盆地,但20世纪60年代开始的大洋钻探结果发现,中生代以来的深海沉积物中存在有多个层位的黑色页岩沉积,并具有全球性及准同时性特征(见文献[30]综述及其中的参考文献)。鉴于此,Schlanger和Jenkyns[31]率先提出了大洋缺氧事件(oceanic anoxic events,简称OAEs)的概念,用以解释侏罗纪—白垩纪期间在全球广泛分布的黑色页岩沉积。近30多年来的研究结果表明,与大洋缺氧事件有关的黑色页岩沉积不但存在于侏罗纪—白垩纪期间,在显生宙其它多个时期也广泛存在[27-28, 32-36]。这些与大洋缺氧事件有关的黑色页岩的特点是分布面积广,广泛分布在克拉通边缘、浅海至深海的广泛区域,且不受沉积相控制(图 1图 2)。这种分布面积广泛、近于同时沉积且不完全受沉积相控制的特点是判断黑色泥页岩是否与大洋缺氧事件有关的重要标志之一。但由于全球200 Ma之前的洋壳及深海沉积物(包括黑色页岩)已经被俯冲消减,对于三叠纪之前发生的大洋缺氧事件,只有那些发育在克拉通边缘及大陆架上相对浅水区域的黑色页岩沉积才能保存下来。

图 1 白垩纪中期古地理重建及大火成岩省及与大洋缺氧有关的黑色页岩分布示意图(据文献[32]) Fig. 1 Paleogeographic map showing distribution of large igneous provinces (LIPs) and coeval black shales and OAE-related sediments in the mid-Cretaceous (ca. 94 Ma) (after reference [32])

图 2 早侏罗世古地理重建及与大洋缺氧有关的黑色页岩分布图(据文献[35]) Fig. 2 Paleogeographic map showing distribution of early Jurassic black shales related to OAEs (after reference [35])

已有的研究结果显示,显生宙(5.4亿年)以来几次重要的大火成岩省均与大规模生物灭绝事件及以大规模黑色页岩系沉积为代表的大洋缺氧事件有密切的成因联系[10, 28]。这些以同期大火成岩省、大洋缺氧事件(黑色泥页岩)及生物灭绝为代表的全球性事件与显生宙地质年代表中多个界限(“金钉子”)可以完全对应。如:泥盆系弗拉斯阶与法门阶界限372.2 Ma;二叠系与三叠系界限252.2 Ma;下侏罗统普林斯巴赫阶与托阿尔阶界限182.7 Ma;上白垩统塞诺曼阶与土伦阶界限93.9 Ma;等(图 3)。因此,显生宙以大火成岩省、黑色页岩及生物灭绝为代表的全球性地质事件可以作为地质年代表划分标志之一。

图 3 显生宙全球大洋缺氧及生物灭绝事件与大火成岩省对比图(据文献[28]) Fig. 3 Diagram showing link between global LIPs, mass extinction and ocean anoxic events during Phanerozoic Eon (after reference [28])

国内外学者围绕显生宙大火成岩省对表生环境及生物演化的影响开展了大量的研究工作,取得了许多重要的进展[2-4, 10-23]。如图 4图 5所示,大陆大火成岩省在喷发过程中会释放出巨量的火山灰及CO2、SO2等温室气体,与大火成岩省相伴的岩床侵入到黑色页岩及煤系地层中也会释放出巨量的CO2、SO2等温室气体,导致海洋酸化及重金属含量增加。尽管巨量火山灰会导致全球温度在短期内降低,但大量释放的温室气体会导致全球变暖及大陆风化作用增加,增加海洋中营养元素输入,引发海洋生产力的升高,诱发海洋中缺氧条件的发生。大陆大火成岩省对大气圈、水圈的最终作用是导致了陆生生物及海生生物的灭绝。显生宙以来发生的5次生物大灭绝事件(奥陶纪末、泥盆纪晚期弗拉斯阶与法门阶界限、二叠纪末、三叠纪末和白垩纪末)均被认为与大规模火山活动导致的环境剧变有关[11]

图 4 大火成岩省喷发及侵入对陆地及海洋生态系统影响示意图(据文献[23]修改) Fig. 4 Diagram showing environmental disruption in both terrestrial and marine ecosystems by LIPs (modified after reference [23])

图 5 显生宙大陆大火成岩省与表生环境及生物灭绝关系示意图(据文献[9-10]) Fig. 5 Flow chart showing environmental effects for continental LIPs during Phanerozoic Eon (after references [9-10])
2 晚前寒武纪大火成岩省与黑色页岩的时空联系及意义

晚前寒武纪(即中—新元古代)有近10亿年(18~8亿年或17.5~7.5亿年)被称为枯燥的10亿年[37]、贫瘠的10亿年[38]或地球中年期[39-40]。尽管相关学者认为地球在这一时期处在一个相对“长期稳定”的构造环境[37-40],但这一时期在全球主要克拉通均发育有以基性熔岩、岩墙及岩床为代表的大火成岩省[1]及大型克拉通或裂谷盆地[41]。在这些盆地内沉积了多个层位的黑色页岩并且赋存有世界上最为古老的油气藏及丰富的页岩气资源[29]。由于对这一时期古环境(特别是大气氧浓度、古海洋氧化还原状态等)及生物门类及演化研究薄弱[42-44],并受到传统模型认为中元古代时期地球海洋深部为“长期缺氧硫化状态”的影响[45],有关“地球中年期”大火成岩省对表生环境的影响及其与全球性黑色页岩沉积的成因关系一直不清楚。

一般认为地球演化早期大气和海洋中是贫氧的,其演化历史中在23亿年及8~7亿年左右经历了两次大气氧浓度的急剧增加(图 6),分别称为大氧化事件(Great Oxidation Event, GOE)和新元古代大气增氧事件(Neoproterozoic Oxygenation Event, NOE)[42-44, 46-48]。新元古代大气增氧事件(NOE)被认为是艾迪卡拉期及之后生物大量出现并繁盛的最主要原因之一[47]。但关于23亿年至7亿年之间,特别是“地球中年期”的大气氧浓度一直很不清楚,不同学者估算的大气氧浓度从0.1%至20% PAL不等(图 6)。

图 6 地球演化历史中大气氧随时间变化示意图(据文献[42]) Fig. 6 Evolution of Earth's atmospheric oxygen content through time (after reference [42])

尽管大多数学者认为“地球中年期”大气氧浓度可能非常低并阻止了生物的出现[37, 49-50],并且深部海水可能长期保持“硫化缺氧”的状态(Canfield海洋模型[45]),但近年来有很多研究成果对这一传统认识提出了挑战:

(1) 在华北克拉通高于庄组沉积地层中发现了距今15.6亿年、个体长达30 cm以上的大型多细胞生物化石群,这类化石以往认为仅在艾迪卡拉期之后即新元古代氧化事件之后才出现[51]

(2) 华北克拉通南缘以往认为是新元古代并富含具刺疑源类化石[52-57]、宏观藻类化石[58]及蠕虫状后生生物遗迹化石[59]的汝阳群—洛峪群近期同位素测年结果(洛峪群近顶部洛峪口组内斑脱岩夹层锆石U-Pb年龄)证实沉积时代早于16亿年[60-61]

(3) 新的高精度年代学结果显示印度中部下文德亚超群含大型(>5 mm)三胚层后生生物化石的加尔克汉德(Chorhat)砂岩的时代为16亿年,而不是以往所认为的新元古代[62-63]

(4) 下马岭组中—下部沉积岩的地球化学研究结果显示在14亿年左右大气氧浓度可能已经超过现代大气氧浓度的4%并足以支持生物的生存[64]

(5) 对高于庄组碳酸盐岩地球化学研究结果显示,在大型多细胞生物化石群出现之前,深部海水在15.7亿年开始已经被氧化[65]

(6) 元素及同位素地球化学研究结果显示,在“地球中年期”的某些时期,深部海水可能已经部分氧化,呈弱氧化或亚氧化状态[66-67]

(7) 对中—新元古代全球黑色页岩中海相沉积黄铁矿微量元素组成的研究结果显示,元古宙时期大气氧浓度较高,并且波动变化的[68]

另外,18亿年左右全球条带状铁建造(banded iron formations,BIF)的消失[69-70]及中元古代沉积岩中大量富赤铁矿红层的出现(如华北克拉通燕辽地区串岭沟组鲕状赤铁矿沉积、杨庄组富赤铁矿白云岩沉积等)也表明“地球中年期”可能有较高的大气氧浓度,暗示这一时期大火成岩省的喷发或侵入可能会导致大洋缺氧及生物灭绝事件的发生。

近20年来随着斜锆石选样技术及定年方法的进步,全球晚前寒武纪大火成岩省精确时代及全球对比已经取得了重要进展[1, 71]。但全球晚前寒武纪黑色页岩时代的精确测定则相对滞后,目前黑色页岩时代的测定主要采用Re-Os同位素定年[24, 72-75],但目前获得的晚前寒武纪黑色页岩Re-Os年龄误差普遍较大(>20 Ma,甚至高达210 Ma[76-80]),虽然对确定这些黑色页岩的时代有重要参考价值,但其精度不足以开展晚前寒武纪大火成岩省与黑色页岩时代的精确对比。

近些年来的研究结果表明,在黑色页岩中普遍含有斑脱岩或火山灰夹层(图 7),通过这些斑脱岩或火山灰内锆石的U-Pb定年,可以准确限定黑色页岩的沉积时代[81-88]。华北克拉通下马岭组中部黑色页岩内斑脱岩夹层的锆石U-Pb定年将黑色页岩的沉积时代限定在13.8亿年左右[81-85, 87]

图 7 华北克拉通燕辽地区下马岭组黑色页岩及其中火山灰(斑脱岩夹层)夹层 Fig. 7 Black shales and tuffs within the Xiamaling Formation in Yanliao area in the North China Craton

近期对华北克拉通燕辽地区下马岭组黑色页岩及北澳大利亚克拉通麦克阿瑟盆地维尔克里(Velkerri)组黑色页岩(富含页岩气资源)与全球主要克拉通13.8亿年大火成岩省的对比研究表明,13.8亿年大火成岩省在北美、格陵兰、西伯利亚、波罗地、非洲、南极等广泛分布,而黑色页岩则广泛沉积在华北、北澳大利亚、西伯利亚、印度及巴西等克拉通[89]。在哥伦比亚超大陆重建图中,无论是大火成岩省还是黑色页岩,均主要分布相邻的陆块上,显示这些在哥伦比亚超大陆主要陆块群中广泛存在的13.8亿年大火成岩省与黑色页岩有明显的时空及成因联系(图 8)。这些广泛沉积的黑色页岩沉积可能与13.8亿年大火成岩省喷发及侵入所导致的大洋缺氧事件密切相关[89]。对全球13.8亿年大火成岩省锆石/斜锆石U-Pb年龄与下马岭组黑色页岩内斑脱岩(火山灰)夹层锆石U-Pb年龄的统计结果表明(图 9),这些大火成岩省及黑色页岩的峰期年龄为1383 Ma。以13.8亿年全球主要克拉通广泛分布的大火成岩省及黑色页岩为代表的全球性重大地质事件为晚前寒武纪国际地质年代表断代提供了重要依据,其峰期年龄将中元古界盖层系与延展系的界限年龄精确限定在1383 Ma[89]。全球主要克拉通13.8亿年大火成岩省及黑色页岩的研究成果表明,13.8亿年大火成岩省与黑色页岩有明显的时空及成因联系,表明“地球中年期”大火成岩省的形成可以导致大洋缺氧事件及黑色页岩沉积,并可能对早期生命演化及生物灭绝有重要的影响[89]。另外,由于华北克拉通下马岭组及北澳大利亚Velkerri组黑色页岩均富含页岩气等资源,研究结果对于认识中元古代黑色页岩内油气资源潜力及其成因也有重要意义。

图 8 不同哥伦比亚(奴那)重建图中约1380 Ma大火成岩省与黑色页岩的空间分布示意图(据文献[89],重建图据文献[90-93]) Fig. 8 Distributions of ~1380 Ma black shales and LIPs in the paleogeographic reconstruction map of the Nuna supercontinent (after reference [89], reconstruction map from references [90-93])

图 9 约1380 Ma大火成岩省锆石/斜锆石U-Pb年龄与下马岭组黑色页岩内火山灰(斑脱岩)锆石U-Pb年龄对比图(据文献[89]) Fig. 9 Comparisons of ages of ~1380 Ma LIPs and those of tuff beds with black shales in the middle part of the Xiamaling Formation in the NCC (after reference [89])

对全球18~7.5亿年沉积地层时代及沉积组合的初步分析及对比结果表明,除13.8亿年大火成岩省及全球性黑色页岩沉积外,“地球中年期”这一时期在全球主要克拉通上发育了多个层位的黑色页岩沉积(如华北克拉通燕辽的串岭沟组、洪水庄组、下马岭组、渣尔泰-白云鄂博裂谷系的阿古鲁沟组、尖山组、比鲁特组及华北南缘的崔庄组等;北澳大利亚克拉通的Wollogarang、Barney Creek、Mainoru及Velkerri组等;西伯利亚克拉通Ust′-Ilya、Vedreshev、Dzhelindukon、Madra、Strelnye Gory、Ayan、Iremeken、Tokur和Miroedikha组等),可能与17.9~17.5亿年、16.5~16.2亿年、约15.8亿年、约15亿年、约13.2亿年、约12.7亿年、约11.0亿年、约9亿年及约7.2亿年等多个大火成岩省有一定联系[94],但由于黑色页岩的时代目前还缺乏有效限定,这种关联还是很初步的,需要在未来开展更为深入的研究工作。

3 结论及展望

已有的资料显示,在哥伦比亚(奴那)超大陆中13.8亿年大火成岩省与黑色页岩沉积有明显的时空及成因联系,以13.8亿年大火成岩省及黑色页岩沉积为代表的全球性事件提供了延展系与盖层系的精确界限1383 Ma,这一研究成果为晚前寒武纪地质年代表划分提供了新的标志及思路。初步的研究结果还显示,“地球中年期”(17.5~7.5亿年)或“枯燥的10亿年”(18~8亿年)可能还有几期大火成岩省与黑色页岩沉积有明显的时空联系,有望为晚前寒武纪地质年代表划分提供更多的标志,也为研究“地球中年期”深部过程(地幔柱及大火成岩省代表的巨量幔源岩浆活动)、表生环境、生物演化、黑色页岩沉积及其相互关系提供了新的思路。

由于前寒武纪艾迪卡拉纪之前的生物门类及大气-海洋环境与显生宙有明显不同,尽管目前初步建立了“地球中年期”大火成岩省与黑色页岩沉积的时空联系并应用于地质年代表断代标志,但依然有很多问题亟待解决,如:①“地球中年期”大火成岩省导致大洋缺氧及黑色页岩的机制是什么?② 18~8亿年黑色页岩为什么富含有机质(总有机碳TOC含量与中生代黑色页岩没有明显差别)?其来源是什么?对认识当时的生物门类及演化有什么意义?③ 18~8亿年黑色页岩沉积是否也伴有未被认识到的生物灭绝事件?等等。这些问题的解决需要古生物学、大地构造学、地球化学、岩石学、沉积学、油气地质学、古生态学等学科交叉及共同努力。

致谢: 感谢Richard Ernst教授的长期交流及讨论

参考文献/References
[1]
ERNST R E. Large igneous provinces[M]. Cambridge: Cambridge University Press, 2014: 653.
[2]
WIGNALL P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1-3): 1-33.
[3]
SOBOLEV S V, SOBOLEV A V, KUZMIN D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J]. Nature, 2011, 477(7364): 312-316. DOI:10.1038/nature10385
[4]
WIGNALL P B. The link between large igneous province eruptions and mass extinctions[J]. Elements, 2005, 1(5): 293-297. DOI:10.2113/gselements.1.5.293
[5]
KERR A C. Oceanic LIPs:the kiss of death[J]. Elements, 2005, 1: 289-292. DOI:10.2113/gselements.1.5.289
[6]
KERR A C. Oceanic plateaus[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 631-667.
[7]
GANINO C, ARNDT N T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces[J]. Geology, 2009, 37(4): 323-326. DOI:10.1130/G25325A.1
[8]
SVENSEN H, JAMTVEIT B. Metamorphic fluids and global environmental changes[J]. Elements, 2010, 6(3): 179-182. DOI:10.2113/gselements.6.3.179
[9]
BOND D P G, WIGNALL P B. Large igneous provinces and mass extinctions: an update[M]//KELLER G, KERR A C. Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Boulder: Geological Society of America, 2014, 505: 29-55.
[10]
ERNST R E, YOUBI N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478: 30-52. DOI:10.1016/j.palaeo.2017.03.014
[11]
沈树忠, 张华. 什么引起五次生物大灭绝?[J]. 科学通报, 2017, 62(11): 1119-1135.
SHEN S Z, ZHANGH Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135. (in Chinese with English abstract)
[12]
BLACK B A, NEELY R R, LAMARQUE J F, et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing[J]. Nature Geoscience, 2018, 11(12): 949-954. DOI:10.1038/s41561-018-0261-y
[13]
BROADLEY M W, BARRY P H, BALLENTINE C J, et al. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles[J]. Nature Geoscience, 2018, 11(9): 682-687. DOI:10.1038/s41561-018-0215-4
[14]
MARZOLI A, RENNE P R, PICCIRILLO E M, et al. Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province[J]. Science, 1999, 284(5414): 616-618. DOI:10.1126/science.284.5414.616
[15]
MARZOLI A, BERTRAND H, KNIGHT K B, et al. Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis[J]. Geology, 2004, 32(11): 973-976. DOI:10.1130/G20652.1
[16]
ZHOU M F, MALPAS J, SONG X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3-4): 113-122. DOI:10.1016/S0012-821X(01)00608-2
[17]
KAMO S L, CZAMANSKE G K, AMELIN Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 214(1-2): 75-91. DOI:10.1016/S0012-821X(03)00347-9
[18]
REICHOW M K, PRINGLE M S, AL'MUKHAMEDOV A I, et al. The timing and extent of the eruption of the Siberian traps large igneous province:Implications for the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277(1-3): 9-20.
[19]
WHITESIDE J H, OLSEN P E, EGLINTON T I, et al. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6721-6725. DOI:10.1073/pnas.1001706107
[20]
SCHALLER M F, WRIGHT J D, KENT D V, et al. Rapid emplacement of the central Atlantic magmatic province as a net sink for CO2[J]. Earth and Planetary Science Letters, 2012, 323-324: 27-39. DOI:10.1016/j.epsl.2011.12.028
[21]
BLACKBURN T J, OLSEN P E, BOWRING S A, et al. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province[J]. Science, 2013, 340(6135): 941-945. DOI:10.1126/science.1234204
[22]
BURGESS S D, BOWRING S A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction[J]. Science Advances, 2015, 1(7): e1500470. DOI:10.1126/sciadv.1500470
[23]
CLAPHAM M E, RENNE P R. Flood basalts and mass extinctions[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 275-303. DOI:10.1146/annurev-earth-053018-060136
[24]
杨競红, 蒋少涌, 凌洪飞, 等. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 2005, 12(2): 143-150.
YANG J H, JIANG S Y, LING H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2): 143-150. DOI:10.3321/j.issn:1005-2321.2005.02.016 (in Chinese with English abstract)
[25]
LENNIGER M, NØHR-HANSEN H, HILLS L V, et al. Arctic black shale formation during Cretaceous oceanic anoxic event 2[J]. Geology, 2014, 42(9): 799-802. DOI:10.1130/G35732.1
[26]
PEARCE C R, COHEN A S, COE A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3): 231-234.
[27]
JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. DOI:10.1029/2009GC002788
[28]
PERCIVAL L M E, WITT M L I, MATHER T A, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE:a link to the Karoo-Ferrar Large Igneous Province[J]. Earth and Planetary Science Letters, 2015, 428: 267-280. DOI:10.1016/j.epsl.2015.06.064
[29]
CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40: 1-47. DOI:10.1016/j.marpetgeo.2012.09.011
[30]
ARTHUR M A, SAGEMAN B B. Marine black shales:depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551. DOI:10.1146/annurev.ea.22.050194.002435
[31]
SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events:causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3): 179-184.
[32]
ALEXANDRE J T, TUENTER E, HENSTRA G A, et al. The mid-Cretaceous North Atlantic nutrient trap:Black shales and OAEs[J]. Paleoceanography and Paleoclimatology, 2010, 25(4): PA4201. DOI:10.1029/2010PA001925
[33]
WINGUTH C, WINGUTH A M E. Simulating Permian-Triassic oceanic anoxia distribution:Implications for species extinction and recovery[J]. Geology, 2012, 40(2): 127-130.
[34]
SONG H J, WIGNALL P B, TONG J N, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery[J]. Earth and Planetary Science Letters, 2012, 353-354: 12-21. DOI:10.1016/j.epsl.2012.07.005
[35]
XU W M, RUHL M, HESSELBO S P, et al. Orbital pacing of the Early Jurassic carbon cycle, black-shale formation and seabed methane seepage[J]. Sedimentology, 2017, 64(1): 127-149. DOI:10.1111/sed.12329
[36]
UVEGES B T, JUNIUM C K, BOYER D L, et al. Biogeochemical controls on black shale deposition during the Frasnian-Famennian biotic crisis in the Illinois and Appalachian Basins, USA, inferred from stable isotopes of nitrogen and carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108787. DOI:10.1016/j.palaeo.2018.05.031
[37]
HOLLAND H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2006, 361(1470): 903-915. DOI:10.1098/rstb.2006.1838
[38]
YOUNG G M. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history[J]. Geoscience Frontiers, 2013, 4(3): 247-261. DOI:10.1016/j.gsf.2012.07.003
[39]
CAWOOD P A, HAWKESWORTH C J. Earth's middle age[J]. Geology, 2014, 42(6): 503-506. DOI:10.1130/G35402.1
[40]
ZHAI M G, HU B, ZHAO T P, et al. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance:a study advance and review[J]. Tectonophysics, 2015, 662: 153-166. DOI:10.1016/j.tecto.2015.01.019
[41]
ALLEN P A, ERIKSSON P G, ALKMIM F F, et al. Chapter 2 Classification of basins, with special reference to Proterozoic examples[J]. Geological Society, London, Memoirs, 2015, 43(1): 5-28. DOI:10.1144/M43.2
[42]
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. DOI:10.1038/nature13068
[43]
CANFIELD D E. The early history of atmospheric oxygen:homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2015, 33: 1-36.
[44]
LEE C T A, YEUNG L Y, MCKENZIE N R, et al. Two-step rise of atmospheric oxygen linked to the growth of continents[J]. Nature Geoscience, 2016, 9(6): 417-424. DOI:10.1038/ngeo2707
[45]
CANFIELD D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396(6710): 450-453. DOI:10.1038/24839
[46]
CANFIELD D E, HABICHT K S, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466): 658-661. DOI:10.1126/science.288.5466.658
[47]
CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95. DOI:10.1126/science.1135013
[48]
OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1-4): 26-57. DOI:10.1016/j.earscirev.2011.09.004
[49]
PLANAVSKY N J, REINHARD C T, WANG X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638. DOI:10.1126/science.1258410
[50]
ZHANG S C, WANG X M, WANG H J, et al. Reply to Planavsky et al.:Strong evidence for high atmospheric oxygen levels 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19): E2552-E2553. DOI:10.1073/pnas.1603982113
[51]
ZHU S X, ZHU M Y, KNOLL A H, et al. Decimetre-scale multicellular eukaryotes from the 1. 56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7: 11500. DOI:10.1038/ncomms11500
[52]
阎玉忠, 朱士兴. 山西永济白草坪组具刺疑源类的发现及其地质意义[J]. 微体古生物学报, 1992, 9(3): 267-282.
YAN Y Z, ZHU S X. Discovery of Acanthomorphic acritarchs from the Baicaoping formation in Yongji, Shanxi and its geological significance[J]. Acta Micropalaeontologica Sinica, 1992, 9(3): 267-282. (in Chinese with English abstract)
[53]
尹崇玉, 高林志. 中国早期具刺疑源类的演化及生物地层学意义[J]. 地质学报, 1995, 69(4): 360-371.
YIN C Y, GAO L Z. The early evolution of the acanthomorphic acritarchs in China and their biostratigraphical implication[J]. Acta Geologica Sinica, 1995, 69(4): 360-371. DOI:10.3321/j.issn:0001-5717.1995.04.001 (in Chinese with English abstract)
[54]
YIN L M. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China[J]. Review of Palaeobotany and Palynology, 1997, 98(1-2): 15-25. DOI:10.1016/S0034-6667(97)00022-5
[55]
尹磊明, 边立曾, 袁训来. 山西中元古代汝阳群分枝管状藻体和显微环状螺旋加厚管体的发现[J]. 中国科学(D辑), 2004, 47(8): 769-774.
YIN L M, BIAN L Z, YUAN X L. Discovery of branched tubular algae and microscopic tubes with annular-helical thickening from the Mesoproterozoic Ruyang Group of Shanxi, North China[J]. Science in China Series D Earth Sciences, 2004, 47(10): 880-885.
[56]
尹磊明, 袁训来, 边立曾, 等. 东秦岭北坡中元古代晚期微体生物群一个早期生命的新窗口[J]. 古生物学报, 2004, 43(1): 1-13.
YIN L M, YUAN X L, BIAN L Z, et al. Late Mesoproterozoic microfossil assemblage on northern slope of eastern Qinling mountains, China:A new window on early Eukaryotes[J]. Acta Palaeontologica Sinica, 2004, 43(1): 1-13. (in Chinese with English abstract)
[57]
高维, 张传恒, 王自强. 华北古陆南缘豫西新元古代大型疑源类及古地理环境分析[J]. 中国地质, 2011, 38(5): 1232-1243.
GAO W, ZHANG C H, WANG Z Q. The discovery of large-scale acanthomorphic acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment[J]. Geology in China, 2011, 38(5): 1232-1243. (in Chinese with English abstract)
[58]
尹崇玉, 高林志. 豫西鲁山洛峪口组宏观藻类的发现及地质意义[J]. 地质学报, 2000, 74(4): 339-344.
YIN C Y, GAO L Z. Discovery of macroscopic algal fossils in the Luoyukou Formation Lushan County, Western Henan, and its stratigraphic significance[J]. Acta Geologica Sinica, 2000, 74(4): 339-344. (in Chinese with English abstract)
[59]
胡健民, 孟庆任, 李文厚. 豫西前寒武纪汝阳群蠕虫状遗迹化石[J]. 科学通报, 1997, 42(20): 1868-1870.
HU J M, MENG Q R, LI W H. Vermiform trace fossils from the Precambrian Ruyang Group, western Henan[J]. Chinese Science Bulletin, 1997, 42(3): 251-254.
[60]
苏文博, 李怀坤, 徐莉, 等. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束[J]. 地质调查与研究, 2012, 35(2): 96-108.
SU W B, LI H K, XU L, et al. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System:direct constraints from the LA-MC-ICPMS U-Pb age of the Tuffite in the Luoyukou Formation, Ruzhou, Henan, China[J]. Geological Survey and Research, 2012, 35(2): 96-108. (in Chinese with English abstract)
[61]
李承东, 赵利刚, 常青松, 等. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论[J]. 中国地质, 2017, 44(3): 511-525.
LI C D, ZHAO L G, CHANG Q S, et al. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion[J]. Geology in China, 2017, 44(3): 511-525. (in Chinese with English abstract)
[62]
SEILACHER A, BOSE P K, PFLVGER F. Triploblastic animals more than 1 billion years ago:Trace fossil evidence from India[J]. Science, 1998, 282(5386): 80-83. DOI:10.1126/science.282.5386.80
[63]
RASMUSSEN B, BOSE P K, SARKAR S, et al. 11.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India:possible implications for early evolution of animals[J]. Geology, 2002, 30(2): 103-106.
[64]
ZHANG S C, WANG X M, WANG H J, et al. Sufficient oxygen for animal respiration 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7): 1731-1736. DOI:10.1073/pnas.1523449113
[65]
ZHANG K, ZHU X K, WOOD R A, et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes[J]. Nature Geoscience, 2018, 11(5): 345-350. DOI:10.1038/s41561-018-0111-y
[66]
DIAMOND C W, LYONS T W. Mid-Proterozoic redox evolution and the possibility of transient oxygenation events[J]. Emerging Topics in Life Sciences, 2018, 2(2): 235-245. DOI:10.1042/ETLS20170146
[67]
PLANAVSKY N J, SLACK J F, CANNON W F, et al. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean[J]. Chemical Geology, 2018, 483: 581-594. DOI:10.1016/j.chemgeo.2018.03.028
[68]
LARGE R R, MUKHERJEE I, GREGORY D D, et al. Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite:Implications for ore genesis in sedimentary basins[J]. Economic Geology, 2017, 112(2): 423-450. DOI:10.2113/econgeo.112.2.423
[69]
吉利明, 陈践发, 郑建京, 等. 华北燕山地区中新元古代沉积记录及其古气候、古环境特征[J]. 地球科学进展, 2001, 16(6): 777-784.
JI L M, CHEN J F, ZHENG J J, et al. Sedimental records and characteristics of palaeoclimate and palaeoenvironment in the Yanshan area, North China in the Mesoprot-erozoic and the Neoproterozoic[J]. Advance in Earth Sciences, 2001, 16(6): 777-784.
[70]
KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world:Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499. DOI:10.2138/am.2005.1871
[71]
ERNST R E, WINGATE M T D, BUCHAN K L, et al. Global record of 1600-700 Ma Large Igneous Provinces (LIPs):implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents[J]. Precambrian Research, 2008, 160(1-2): 159-178. DOI:10.1016/j.precamres.2007.04.019
[72]
RAVIZZA G, TUREKIAN K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3257-3262. DOI:10.1016/0016-7037(89)90105-1
[73]
KENDALL B, CREASER R A, SELBY D. Re-Os geochronology of postglacial black shales in Australia:Constraints on the timing of "Sturtian" glaciation[J]. Geology, 2006, 34(9): 729-732. DOI:10.1130/G22775.1
[74]
TURGEON S C, CREASER R A, ALGEO T J. Re-Os depositional ages and seawater Os estimates for the Frasnian-Famennian boundary:Implications for weathering rates, land plant evolution, and extinction mechanisms[J]. Earth and Planetary Science Letters, 2007, 261(3-4): 649-661. DOI:10.1016/j.epsl.2007.07.031
[75]
XU G P, HANNAH J L, STEIN H J, et al. Re-Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations[J]. Earth and Planetary Science Letters, 2009, 288(3-4): 581-587. DOI:10.1016/j.epsl.2009.10.022
[76]
KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2534-2558. DOI:10.1016/j.gca.2009.02.013
[77]
ACKEN D V, THOMSON D, RAINBIRD R H, et al. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada:Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet Formations[J]. Precambrian Research, 2013, 236: 124-131. DOI:10.1016/j.precamres.2013.07.012
[78]
GEBOY N J, KAUFMAN A J, WALKER R J, et al. Re-Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil[J]. Precambrian Research, 2013, 238: 199-213. DOI:10.1016/j.precamres.2013.10.010
[79]
BERTONI M E, ROONEY A D, SELBY D, et al. Neoproterozoic Re-Os systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for hydrocarbon exploration[J]. Precambrian Research, 2014, 255: 355-366. DOI:10.1016/j.precamres.2014.10.010
[80]
LIU Y F, BAGAS L, NIE F J, et al. Re-Os system of black schist from the Mesoproterozoic Bayan Obo Group, Central Inner Mongolia, China and its geological implications[J]. Lithos, 2016, 261: 296-306. DOI:10.1016/j.lithos.2015.11.023
[81]
高林志, 张传恒, 史晓颖, 等. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2007, 26(3): 249-255.
GAO L Z, ZHANG C H, SHI X Y, et al. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China[J]. Geological Bulletin of China, 2007, 26(3): 249-255. (in Chinese with English abstract)
[82]
高林志, 张传恒, 尹崇玉, 等. 华北古陆中-新元古代年代地层框架SHRIMP锆石年龄新依据[J]. 地球学报, 2008, 29(3): 366-376.
GAO L Z, ZHANG C H, YIN C Y, et al. SHRIMP zircon ages:basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China Old Land[J]. Acta Geoscientica Sinica, 2008, 29(3): 366-376. (in Chinese with English abstract)
[83]
高林志, 张传恒, 史晓颖, 等. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据[J]. 科学通报, 2008, 53(21): 2617-2623.
GAO L Z, ZHANG C H, SHI X Y, et al. Mesoproterozoic age for Xiamaling formation in North China Plate indicated by zircon SHRIMP dating[J]. Chinese Science Bulletin, 2008, 53(17): 2665-2671.
[84]
SU W B, ZHANG S H, HUFF W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3): 543-553.
[85]
苏文博, 李怀坤, HUFF W D, 等. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 科学通报, 2010, 55(22): 2197-2206.
SU W B, LI H K, HUFF W D, et al. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China[J]. Chinese Science Bulletin, 2010, 55(29): 3312-3323.
[86]
孙会一, 高林志, 包创, 等. 河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质学报, 2013, 87(4): 591-596.
SUN H Y, GAO L Z, BAO C, et al. SHRIMP zircon U-Pb of Mesoproterozoic Chuanlinggou Formation from Kuancheng County in Hebei Province and its geological implications[J]. Acta Geologica Sinica, 2013, 87(4): 591-596. (in Chinese with English abstract)
[87]
ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413.
[88]
刘典波, 王小琳, 张恒石, 等. 华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义[J]. 地学前缘, 2019, 26(3): 183-189.
LIU D B, WANG X L, ZHANG H S, et al. Zircon SHRIMP U-Pb age of the Chuanlinggou Formation of the Changcheng Group, North China and the stratigraphic implications[J]. Earth Science Frontiers, 2019, 26(3): 183-189. (in Chinese with English abstract)
[89]
ZHANG S H, ERNST R E, PEI J L, et al. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales:Implications for the Mesoproterozoic time scale and paleoenvironment[J]. Geology, 2008, 46(11): 963-966.
[90]
ZHAO G C, CAWOOD P A, WILDE S A, et al. A review of global 2.1~1.8 Ga orogens:implications for a pre-Rodinia supercontinent[J]. Earth-Science Review, 2002, 59(1-4): 125-162. DOI:10.1016/S0012-8252(02)00073-9
[91]
EVANS D A D, MITCHELL R N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 2011, 39(5): 443-446. DOI:10.1130/G31654.1
[92]
ZHANG S H, LI Z X, EVANS D A D, et al. Pre-Rodinia supercontinent Nuna shaping up:A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353-354: 145-155. DOI:10.1016/j.epsl.2012.07.034
[93]
PISAREVSKY S A, ELMING S Å, PESONEN L J, et al. Mesoproterozoic paleogeography:supercontinent and beyond[J]. Precambrian Research, 2014, 244: 207-225. DOI:10.1016/j.precamres.2013.05.014
[94]
ZHANG S H, ERNST R E, PEI J L, et al. LIPs (large igneous provinces) and anoxia events in 'the Boring Billion'[M]//ERNST R E, SUWAIDI A A, BEKKER A, et al. Environmental Change and Large Igneous Provinces: The Deadly Kiss of LIPs. American Geophysical Union and John Wiley & Sons, Inc., 2019. (in press)