地质力学学报  2019, Vol. 25 Issue (6): 1058-1067
引用本文
王新新, 崔德育, 孙崇浩, 张晟, 房璐, 张敏. 哈拉哈塘油田A地区断裂特征及其控油作用[J]. 地质力学学报, 2019, 25(6): 1058-1067.
WANG Xinxin, CUI Deyu, SUN Chonghao, ZHANG Sheng, FANG Lu, ZHANG Min. CHARACTERISTICS OF STRIKE-SLIP FAULT AND ITS CONTROLLING ON OIL IN BLOCK A OF THE HALAHATANG OILFIELD, TARIM BASIN[J]. Journal of Geomechanics, 2019, 25(6): 1058-1067.
哈拉哈塘油田A地区断裂特征及其控油作用
王新新, 崔德育, 孙崇浩, 张晟, 房璐, 张敏    
中国石油塔里木油田分公司勘探开发研究院, 新疆 库尔勒 841000
摘要:塔里木盆地哈拉哈塘地区走滑断裂发育类型多样,平面上表现为明显的分段性,活动期次上具有多期性与继承性发育的特点。基于地震资料,采用多种方法查明了哈拉哈塘A地区断裂平面展布特征,并结合应力性质对哈拉哈塘A区块走滑断裂的发育特征进行研究,明确了走滑断裂对油气差异富集的控制作用。研究发现,研究区共发育3条主干断裂,根据断裂组合样式、地震剖面及古地貌特征将这3条走滑断裂分为张扭、压扭、走滑等12段;深大断裂带控储控藏特征明显,走滑断裂不同应力段控制岩溶储集层发育和油气富集;走滑断裂压扭段及张扭段的构造高部位易形成大型缝洞集合体,是优质储集层发育与油气成藏的优势区域。
关键词海相碳酸盐岩    走滑断裂    应力性质    断裂控储控藏    哈拉哈塘地区    
DOI10.12090/j.issn.1006-6616.2019.25.06.088     文章编号:1006-6616(2019)06-1058-10
CHARACTERISTICS OF STRIKE-SLIP FAULT AND ITS CONTROLLING ON OIL IN BLOCK A OF THE HALAHATANG OILFIELD, TARIM BASIN
WANG Xinxin, CUI Deyu, SUN Chonghao, ZHANG Sheng, FANG Lu, ZHANG Min    
Research Institute of Petroleum Exploration and Development, Tarim Oilfield Company, PetroChina, Korla 841000, Xinjiang, China
Abstract: There are various types of strike-slip faults in Halahatang area, Tarim basin, which show obvious segmentation in the plane and characteristics of multistage and inheritance development during the active period. With the help of innovative geophysical method, the author identified the characteristics of faults spreading in the plane. In addition, combining with the nature of stress we studied the development characteristics of strike-slip faults in Block A of Halahatang oilfield and clarified their control effects on differential enrichment of hydrocarbons. The study shows that there are three main faults in this area which can be divided into 12 segments, such as transtensional, transpressional, strike-slip section. Deep fault plays an important role in the development of reservoirs, and the development of karst reservoir and accumulation of oil and gas are controlled by different stress segments of faults. Large fracture-cavity aggregate is easy to be formed in high tectonic position of transtensional and transpressional section of strike-slip fault which is the advantage area for high quality reservoir and hydrocarbon accumulation.
Key words: marine carbonate    strike-slip fault    nature of sress    fault-controlled reservoir    Halahatang area    
0 引言

近年来塔北隆起哈拉哈塘地区奥陶系碳酸盐岩油气勘探持续获得突破[1-3],目前产能已达120×104t规模,奥陶系大型油气田基本查明。哈拉哈塘地区的主要勘探对象是奥陶系一间房组—鹰山组岩溶储集层,具有缝洞储集体规模发育,整体连片含油、局部富集的特点[4-5]。其储集层发育主要受控于断裂破碎带岩溶和多期风化淋滤作用,断裂活动在储集层形成过程中发挥了重要作用[6-7]。但塔里木盆地哈拉哈塘地区断裂研究面临以下难点:受多期构造活动、岩溶改造等影响,断裂系统复杂、断裂分布规律难以厘清;走滑断裂断距极小,平面断裂组合难度极大;受上覆二叠系火成岩地层的速度场影响,深部碳酸盐岩内幕地震资料品质较差,这些都为断裂精细解剖增加了难度[1]

在断裂控储控藏方面,已做了大量研究。在储层方面,断裂沟通深部流体与碳酸盐岩作用形成萤石、热液白云岩化或硅化等,改变储层的时空分布关系[8-10], 对深部碳酸盐岩通过溶蚀改造作用形成优质储层[11-12]。此外,断裂活动延伸至地表,形成表生溶蚀作用,增加储层厚度和储层的渗滤性能[13-14]。从目前已有钻探和地震储层正演看,断裂及其控制的裂缝发育带常伴随着优质储层的发育,如地震剖面上“串珠状”缝洞型储集层沿断裂分布[15]。在油气成藏方面,深大断裂常沟通深部烃源岩,是油气运移的优势通道,断裂活动有利于烃源岩与油气聚集区形成空间配置关系[16-17],断裂的多期活动、断层的性质对油气运移路径、成藏时期以及油气藏的分布具有重要影响[18-19]

文章基于高分辨三维地震资料,在系统总结塔里木盆地哈拉哈塘油田A地区奥陶系一间房组断裂特征及力学机制的基础上,综合分析断裂与储层发育和油气成藏的匹配关系,结合断裂组合样式、古地貌特征及已钻井资料综合分析,创新性地将本区断裂分为张扭、压扭、走滑等12段,明确了走滑断裂不同应力段对油气差异富集的影响,以期对哈拉哈塘地区油气勘探和开发有所裨益。

1 地质概况

哈拉哈塘油田位于塔里木盆地塔北隆起轮南低凸起哈拉哈塘鼻状构造带上[20],北为轮台凸起,南邻北部坳陷,西接英买力低凸起,面积约4000 km2[4]。研究区A区块位于哈拉哈塘油田南部,面积约500 km2的高分辨率三维地震区(图 1)。哈拉哈塘鼻状隆起位于轮南低凸起与英买力低凸起之间的过渡带,自奥陶系一间房组沉积以来始终是塔北隆起南缘斜坡的一部分,沉积构造演化相对简单。整体来看,哈拉哈塘地区主要经历了早加里东运动古隆起雏形期、中晚加里东—早海西运动期古隆起形成阶段、晚海西—印支运动期断隆发育阶段、燕山—喜马拉雅运动期调整定型阶段等多期特征构造演化阶段,每期构造演化都在沉积层中留下痕迹[21]

图 1 塔里木盆地塔北隆起构造单元划分及研究区位置 Fig. 1 Location of the research area and division of structural units in Tabei uplift, Tarim Basin

哈拉哈塘地区发育震旦系至泥盆系海相沉积地层、石炭系至二叠系海陆交互相沉积地层和中新生界陆相沉积地层。自上而下为新生界第四系,新近系和古近系,中生界白垩系、侏罗系、三叠系,古生界二叠系、石炭系、志留系、奥陶系。奥陶系可细分为上统桑塔木组(O3s)、良里塔格组(O3l)及吐木休克组(O3t),中统一间房组(O2y),中—下统鹰山组(O1-2 y)、下奥陶统蓬莱坝组(图 2)。中奥陶统一间房组—鹰山组1段上部地层是目前发现的主要含油层系,为岩溶储集层。上奥陶统桑塔木组、良里塔格组、吐木休克组整体由南向北依次剥蚀尖灭,最北部为志留系柯坪塔格组覆盖于奥陶系一间房组潜山之上[4]

图 2 哈拉哈塘油田南北向地层剖面 Fig. 2 The NS trending stratigraphic profile in Halahatang oilfield
2 走滑断裂的识别与基本特征 2.1 走滑断裂的识别

曲率、相干技术可以有效识别走滑断裂[22-24]。在已有研究成果的基础上,应用最新处理的高密度三维资料,以理论模型为指导,以动力学、运动学、几何学,断裂分期、分级、分段的“三学三分”为基础,按照“深层定主干,浅层定分支,平剖结合”的思路,通过曲率、相干处理技术对走滑断裂进行精细刻画与解释[25-26]。通过断裂精细解剖发现,研究区古生界断层发育,是英买力-哈拉哈塘断裂系统向南的延伸部分;奥陶系一间房组顶面相干图上断裂线性延伸特征清楚,平面上发育北北东向和北北西向两组断裂,共发育3条主干走滑断裂:F1断裂、F2断裂、F3断裂(图 3),主要构造样式有线性构造、辫状构造、羽状构造等。剖面上主要表现为花状及直立型断裂(图 4)。线性构造地震剖面上表现为单一高角度断层,断面平直,平面直线延伸,垂向与水平断距均较小,通常为小型断裂或断裂活动较弱的区段,断裂两侧的地层起伏较低。线性构造在空间上可能平行分布或侧列分布,形成相互近于平行的高陡断裂带。辫状构造往往是大型走滑断裂的特有标志,由于强烈的挤压、平移,迫使较宽的断裂带压缩、直线化,形成辫状构造。研究区F1断裂带为英买力低凸起和轮南低凸起调节断裂,平面延伸距离达80 km以上,平面上表现为垒堑相间的辫状构造。地震剖面上表现为垒堑相间的花状构造,具有较宽的破碎带,破碎带宽度约0.6~2.1 km。

图 3 哈拉哈塘油田A区块奥陶系一间房顶面相干及断裂平面分布 Fig. 3 Top surface coherence and fault plane distribution of the Ordovician Yijianfang formation in Block A, Halahatang oilfield

图 4 哈拉哈塘油田A区块走滑断裂典型构造 Fig. 4 Typical structures of strike-slip faults in Block A, Halahatang oilfield
2.2 走滑断裂的演化

塔里木盆地经历多期不同方向的斜向构造挤压作用,有利于在盆地内部发育走滑断裂系统。哈拉哈塘地区作为塔里木盆地的一部分,其断裂发育特征必受到区域应力的影响。受晚加里东—海西运动晚期多期构造活动影响,哈拉哈塘地区形成以北东—南西向、北西—南东向为主的走滑断裂群[21]。三维地震资料表明,研究区主要发育北北东、北北西向两组走滑断裂。断裂发育类型多样,具有分层性和分段性,活动期次上具有多期性与继承性发育特征。研究区的断裂系统是哈拉哈塘地区断裂系统向西南的延伸部分,与奥陶系相关的断裂主要有两期,第一期主要为北北东向走滑断裂(图 5中红色断裂F2、F3),形成于加里东运动中期,晚期没有进一步活动,断开层位自基底至奥陶系桑塔木组底部,剖面上断距较小,约20 m。平面上F2断裂延伸约21.5 km,整体表现为右旋右阶特征;F3断裂平面上向东北可延伸至金跃、热瓦普区块,延伸长度大于40 km,整体表现为右旋左阶特征。第二期为北北西向大型走滑断裂(图 5中绿色断裂F1),形成于加里东运动中期,海西运动期进一步活动,断开层位自基底至石炭系底部,剖面上一间房组顶面断距较大,20~120 m,其他层位断距较小。

图 5 哈拉哈塘油田A区块断裂演化剖面(平面位置见图 3中D) Fig. 5 The evolution profiles of faults in Block A, Halahatang oilfied (plane location shown in D of Fig. 3)
2.3 走滑断裂的应力性质

走滑断裂的形成演化过程不是连续不断的,而是表现出明显的分段性。由研究区一间房组古地貌图可以看出,3组主干断裂带表现出明显的正负地貌相间分布的特征(图 6a)。

图 6 哈拉哈塘油田A区块古地貌及典型地震剖面 Fig. 6 Paleogeomorphology and typical seismic profiles in Block A, Halahatnag oilfield

根据断裂组合样式、地震剖面及古地貌特征对断裂的应力性质进行分段,分段依据为:平面古地貌及地震剖面的高部位为压扭段,平面古地貌及地震剖面的低部位为张扭段,平面古地貌及地震剖面的平部位为走滑段;3组主干断裂共分为12段:张扭6段,压扭5段,走滑1段。以研究区断裂为例,从力学性质角度出发,F1辫状断裂垒堑相间,三维框内自南向北分为3段,两段压扭、一段张扭;F2断裂自南向北分为张扭段、走滑段、张扭段3段;F3断裂带自南向北分为6段,3段张扭、3段压扭。地震剖面上,张扭段表现为负花状,压扭段则表现为正花状特征,因此,地震剖面特征可以较好地反映走滑断裂的应力性质(图 6b)。

3 走滑断裂控油作用 3.1 走滑断裂对储集层的改造

深大断裂对岩溶储集层发育的控制作用主要体现在形成断裂破碎带、地表大气淡水的下渗和为深层热液的侵入提供渗流通道三个方面[27-29]。走滑断裂活动会形成破碎带,并通过物理、化学作用改善其储集性能[30-31]。哈拉哈塘地区深部热液沿断裂自下而上做垂向运移,并对围岩进行溶蚀,形成大量溶蚀孔洞;同时,油气由南向北大范围充注,沿裂缝渗入的酸性流体会使原有的孔洞缝发生扩溶[4]。碳酸盐岩发育多种储集层空间类型,主断裂面附近往往钻遇放空漏失,主干断裂带是规模储集层发育的最有利部位。研究区目的层奥陶系一间房组—鹰山组经历了多期构造运动,地层整体被抬升、暴露形成多期大规模不整合面岩溶,其中以加里东中期层间岩溶最为关键,在一间房组—鹰山组形成了大量的溶蚀孔洞、洞穴,为后期岩溶叠加改造奠定基础[32-33]。加里东中期及其前后形成的多组断裂和裂缝系统,为岩溶作用提供了渗滤通道,溶蚀总是沿断裂及其缝网形成的薄弱带、溶蚀优势带进行,并以断裂为核心向周围溶蚀扩大形成断溶体[34-35](图 7)。

图 7 哈拉哈塘油田A区块东西向油藏剖面 Fig. 7 The reservoir profile in EW direction in Block A, Halahatang oilfield
3.2 走滑断裂力学性质与油气的关系

研究区深大断裂带控储控藏特征明显[16-19, 36],表现为主干断裂带油井高产稳产,油气充注强度大,钻探基本不含水(图 8)。从平面看串珠状强反射基本都位于主干断裂带发育区,充分说明了走滑断裂控制岩溶缝洞体的重要作用。走滑断裂的应力性质控储控藏表现为以下两方面:①走滑断裂应力性质控制岩溶储集层发育程度。走滑段构造应力较弱,破碎带分布范围较局限,缝洞集合体沿断裂零星分布;压扭段构造应力较强,断层周边储集层发育,易形成大型缝洞集合体;张扭段构造应力最强,断裂带破碎程度高,裂缝发育,有利于大型缝洞集合体的形成。②走滑断裂应力性质控制油气富集。当有底水存在时,正花状压扭断层高部位油气富集,张扭性断层的下降盘易见水,上升盘一侧容易聚集油气;断裂带整体油气富集时,负花状张扭断裂破碎带内部储集层连通性好,易高产稳产;走滑段由于储集层规模较小难以形成大规模高效油藏。

图 8 哈拉哈塘油田A区块断裂分段与生产现状叠合图 Fig. 8 Superimposed map of and fault segment and production status in Block A, Halahatang oilfield
4 结论

(1) 研究区走滑断裂平面上主要发育北北东向和北北西向两组断裂,共发育3条主干走滑断裂,主要构造样式有线性构造、辫状构造、羽状构造等。

(2) 哈拉哈塘油田A地区与奥陶系有关的走滑断裂主要形成于加里东运动中期,根据海西运动期是否继续活动分为两个期次。

(3) 研究区走滑断裂的应力性质在平面上具有明显的分段性,根据断裂组合样式、地震剖面及古地貌特征将3条走滑断裂分为12段,张扭、压扭、走滑段分别表现出不同的特征。

(4) 研究区深大断裂带控储控藏特征明显,走滑断裂不同应力段控制岩溶储集层发育和油气富集;压扭段及张扭段的构造高部位易形成大型缝洞集合体。

参考文献/References
[1]
周新源, 吕修祥, 杨海军, 等. 塔中北斜坡走滑断裂对碳酸盐岩油气差异富集的影响[J]. 石油学报, 2013, 34(4): 628-637.
ZHOU Xinyuan, LÜ Xiuxiang, YANG Haijun, et al. Effects of strike-slip faults on the differential enrichment of hydrocarbons in the northern slope of Tazhong area[J]. Acta Petrolei Sinica, 2013, 34(4): 628-637. (in Chinese with English abstract)
[2]
倪新锋, 张丽娟, 沈安江, 等. 塔里木盆地英买力-哈拉哈塘地区奥陶系岩溶储集层成岩作用及孔隙演化[J]. 古地理学报, 2010, 12(4): 467-479.
NI Xinfeng, ZHANG Lijuan, SHEN Anjiang, et al. Diagenesis and pore evolution of the Ordovician karst reservoir in Yengimahalla-Hanilcatam region of Tarim Basin[J]. Journal of Palaeogeography, 2010, 12(4): 467-479. (in Chinese with English abstract)
[3]
代东东, 孙勤华, 王宏斌, 等. 塔里木盆地哈拉哈塘地区奥陶系顺层岩溶带高产稳产主控因素[J]. 天然气地球科学, 2015, 26(S1): 88-96.
DAI Dongdong, SUN Qinhua, WANG Hongbin, et al. Analysis controlling factors of high and stable yield of Ordovician bedding karst zone in Halahatang area, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(S1): 88-96. DOI:10.11764/j.issn.1672-1926.2015.S1.0088 (in Chinese with English abstract)
[4]
朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3): 827-844.
ZHU Guangyou, YANG Haijun, ZHU Yongfeng, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 827-844. (in Chinese with English abstract)
[5]
何君, 韩剑发, 潘文庆. 轮南古隆起奥陶系潜山油气成藏机理[J]. 石油学报, 2007, 28(2): 44-48.
HE Jun, HAN Jianfa, PAN Wenqing. Hydrocarbon accumulation mechanism in the giant buried hill of Ordovician in Lunnan Paleohigh of Tarim Basin[J]. Acta Petrolei Sinica, 2007, 28(2): 44-48. DOI:10.3321/j.issn:0253-2697.2007.02.008 (in Chinese with English abstract)
[6]
邬光辉, 杨海军, 屈泰来, 等. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用[J]. 岩石学报, 2012, 28(3): 793-805.
WU Guanghui, YANG Haijun, QU Tailai, et al. The fault system characteristics and its controlling roles on marine carbonate hydrocarbon in the Central uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 793-805. (in Chinese with English abstract)
[7]
邬光辉, 陈志勇, 屈泰来, 等. 塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系[J]. 地质学报, 2012, 86(2): 219-227.
WU Guanghui, CHEN Zhiyong, QU Tailai, et al. Characteristics of the strik-slip fault facies in Ordovician carbonate in the Tarim Basin, and its relations to hydrocarbon[J]. Acta Geologica Sinica, 2012, 86(2): 219-227. DOI:10.3969/j.issn.0001-5717.2012.02.001 (in Chinese with English abstract)
[8]
庞宏, 庞雄奇, 石秀平, 等. 调整改造作用对塔中油气藏的影响[J]. 西南石油大学学报(自然科学版), 2010, 32(1): 33-39.
PANG Hong, PANG Xiongqi, SHI Xiuping, et al. The influence of adjustment and modification on hydrocarbon accumulation in Tazhong Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(1): 33-39. DOI:10.3863/j.issn.1674-5086.2010.01.006 (in Chinese with English abstract)
[9]
赵文智, 朱光有, 张水昌, 等. 天然气晚期强充注与塔中奥陶系深部碳酸盐岩储集性能改善关系研究[J]. 科学通报, 2009, 54(20): 3218-3230.
ZHAO Wenzhi, ZHU Guangyou, ZHANG Shuichang, et al. Relationship between the later strong gas-charging and the improvement of the reservoir capacity in deep Ordovician carbonate reservoir in Tazhong Area, Tarim Basin[J]. Chinese Science Bulletin, 2009, 54(17): 3076-3089.
[10]
周新源, 王招明, 杨海军, 等. 中国海相油气田勘探实例之五:塔中奥陶系大型凝析气田的勘探和发现[J]. 海相油气地质, 2006, 11(1): 45-51.
ZHOU Xinyuan, WANG Zhaoming, YANG Haijun, et al. Cases of discovery and exploration of marine fields in China (Part 5):Tazhong Ordovician condensate field in Tarim Basin[J]. Marine Origin Petroleum Geology, 2006, 11(1): 45-51. DOI:10.3969/j.issn.1672-9854.2006.01.008 (in Chinese with English abstract)
[11]
朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2182-2194.
ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR:an important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194. (in Chinese with English abstract)
[12]
吴茂炳, 王毅, 郑孟林, 等. 塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J]. 中国科学D辑:地球科学, 2007, 37(SⅠ): 83-92.
WU Maobing, WANG Yi, ZHENG Menglin, et al. Hydrothermal karst of Ordovician carbonate and its influence on reservoir in Tazhong area[J]. Science china:Series D(Earth Sciences), 2007, 37(Supp.1): 83-92. (in Chinese with English abstract)
[13]
邬光辉, 成丽芳, 刘玉魁, 等. 塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用[J]. 新疆石油地质, 2011, 32(3): 239-243.
WU Guanghui, CHENG Lifang, LIU Yukui, et al. Strike-slip fault system of the Cambrian-Ordovician and its oil-controlling effect in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 239-243. (in Chinese with English abstract)
[14]
张艳萍, 杨海军, 吕修祥, 等. 塔中北斜坡中部走滑断裂对油气成藏的控制[J]. 新疆石油地质, 2011, 32(4): 342-344.
ZHANG Yanping, YANG Haijun, LV Xiuxiang, et al. Strike-slip faults and their controls on hydrocarbon reservoir in middle part of northern slope of Tazhong Area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(4): 342-344. (in Chinese with English abstract)
[15]
罗春树, 杨海军, 蔡振忠, 等. 塔中82井区优质储集层的控制因素[J]. 新疆石油地质, 2007, 28(5): 589-591.
LUO Chunshu, YANG Haijun, CAI Zhenzhong, et al. Controlling factors of premium reservoir rock in Tazhong wellblock-82[J]. Xinjiang Petroleum Geology, 2007, 28(5): 589-591. DOI:10.3969/j.issn.1001-3873.2007.05.017 (in Chinese with English abstract)
[16]
罗群. 断裂控烃理论的概念、原理、模式与意义[J]. 石油勘探与开发, 2010, 37(3): 316-324.
LUO Qun. Concept, principle, model and significance of the fault controlling hydrocarbon theory[J]. Petroleum Exploration and Development, 2010, 37(3): 316-324. (in Chinese with English abstract)
[17]
王平. 为什么二、三级断层对油气聚集起控制作用:复杂断块油气田形成条件系列论文之四[J]. 断块油气田, 1994, 1(5): 1-5.
WANG ping. The Controlling Mechanism of Second or Third-Class Faults on Hydrocarbon Migration and Accumulation[J]. Fault Block oil & Gas Field, 1994, 1(5): 1-5. (in Chinese with English abstract)
[18]
张承泽, 于红枫, 张海组, 等. 塔中地区走滑断裂特征、成因及地质意义[J]. 西南石油大学学报(自然科学版), 2008, 30(5): 22-26.
ZHANG Chengze, YU Hongfeng, ZHANG Haizu, et al. Characteristic, genesis and geologic meaning of strike-slip fault system in Tazhong Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(5): 22-26. DOI:10.3863/j.issn.1000-2634.2008.05.005 (in Chinese with English abstract)
[19]
王福焕, 韩剑发, 向才富, 等. 叠合盆地碳酸盐岩复杂缝洞储层的油气差异运聚作用:塔中83井区表生岩溶缝洞体系实例解剖[J]. 天然气地球科学, 2010, 21(1): 33-41.
WANG Fuhuan, HAN Jianfa, XIANG Caifu, et al. Differential hydrocarbon migration and accumulation in complex fissure and pore carbonate reservoir of superposition basin:an example of pore fissure-fracture reservoir formed by supergene karstification in Tz83 Well Area[J]. Natural Gas Geoscience, 2010, 21(1): 33-41. (in Chinese with English abstract)
[20]
闵华军, 陈利新, 王连山, 等. 哈拉哈塘缝洞型油藏油井产水特征及机理分析[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 114-123.
MIN Huajun, CHEN Lixin, WANG Lianshan, et al. Characteristics and mechanism of water production for fractured vuggy carbonate reservoirs, Halahatang Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 114-123. (in Chinese with English abstract)
[21]
孙东, 杨丽莎, 王宏斌, 等. 塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用[J]. 天然气地球科学, 2015, 26(S1): 80-87.
SUN Dong, YANG Lisha, WANG Hongbin, et al. Strike-slip fault system in Halahatang area of Tarim Basin and its control on reservoirs of Ordovician marine carbonate rock[J]. Natural Gas Geoscience, 2015, 26(S1): 80-87. DOI:10.11764/j.issn.1672-1926.2015.S1.0080 (in Chinese with English abstract)
[22]
佘德平, 曹辉, 郭全仕. 断裂系统解释与储层预测中的三维相干技术[J]. 石油与天然气地质, 2007, 28(1): 100-105.
SHE Deping, CAO Hui, GUO Quanshi. 3D coherence technique in fault system interpretation and reservoir prediction[J]. Oil & Gas Geology, 2007, 28(1): 100-105. DOI:10.3321/j.issn:0253-9985.2007.01.014 (in Chinese with English abstract)
[23]
孙夕平, 杜世通. 相干体技术算法研究及其在地震资料解释中的应用[J]. 石油大学学报(自然科学版), 2003, 27(2): 32-35, 40.
SUN Xiping, DU Shitong. Development and application of algorithm of coherency cub technique to seismic interpretation[J]. Journal of the University of Petroleum, China, 2003, 27(2): 32-35, 40. (in Chinese with English abstract)
[24]
程怡, 王红, 高启才, 等. GeoEast系统解释技术在非常规油气勘查中的应用[J]. 石油地球物理勘探, 2014, 49(S1): 202-207.
CHENG Yi, WANG Hong, GAO Qicai, et al. Application of interpretation techniques provided by GeoEast in unconventional hydrocarbon exploration[J]. Oil Geophysical Prospecting, 2014, 49(S1): 202-207. (in Chinese with English abstract)
[25]
陈海清, 白军, 邹雯, 等. GeoEast属性分析技术在柳沟庄裂缝储层预测中的应用[J]. 石油地球物理勘探, 2014, 49(S1): 154-159.
CHEN Haiqing, BAI Jun, ZOU Wen, et al. Fractured reservoir prediction in Liugouzhuang with seismic attribute approaches provided by GeoEast[J]. Oil Geophysical Prospecting, 2014, 49(S1): 154-159. (in Chinese with English abstract)
[26]
李树珍, 李相文, 张建伟, 等. GeoEast软件体曲率属性技术在碳酸盐岩断裂研究中的应用[J]. 石油地质与工程, 2016, 30(2): 53-55, 79.
LI Shuzhen, LI Xiangwen, ZHANG Jianwei, et al. Application of Geoeast curvature attribute technology to the study of carbonate fracture[J]. Petroleum Geology and engineering, 2016, 30(2): 53-55. DOI:10.3969/j.issn.1673-8217.2016.02.015 (in Chinese with English abstract)
[27]
吕修祥, 杨宁, 周新源, 等. 塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响[J]. 中国科学D辑:地球科学, 2008, 51(SⅠ): 48-54.
LÜ Xiuxiang, YANG Ning, ZHOU Xinyuan, et al. Influence of Ordovician carbonate reservoir beds in Tarim Basin by faulting[J]. Science in China Series D:Earth Sciences, 2008, 51(SⅡ): 53-60.
[28]
DUGGAN J P, MOUNTJOY E W, STASIUK L D. Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada[J]. Sedimentology, 2001, 48(2): 301-323. DOI:10.1046/j.1365-3091.2001.00364.x
[29]
GREEN D G, MOUNTJOY E W. Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta Deep Basin[J]. CSPG Bulletin, 2005, 53(2): 101-129.
[30]
张仲培, 王毅, 云金表, 等. 塔中地区断裂不同演化阶段对油气聚集的控制[J]. 石油与天然气地质, 2009, 30(3): 316-323.
ZHANG Zhongpei, WANG Yi, YUN Jinbiao, et al. Control of faults at different evolution stages on hydrocarbon accumulation in Tazhong area, the Tarim Basin[J]. Oil & Gas Geology, 2009, 30(3): 316-323. DOI:10.3321/j.issn:0253-9985.2009.03.010 (in Chinese with English abstract)
[31]
李萌, 汤良杰, 漆立新, 等. 塔北隆起南坡差异构造演化及其对油气成藏的控制[J]. 天然气地球科学, 2015, 26(2): 218-228.
LI Meng, TANG Liangjie, QI Lixin, et al. Differential tectonic evolution and its controlling on hydrocarbon accumulation in the south slope of Tabei Uplift[J]. Natural Gas Geoscience, 2015, 26(2): 218-228. (in Chinese with English abstract)
[32]
王振宇, 李凌, 谭秀成, 等. 塔里木盆地奥陶系碳酸盐岩古岩溶类型识别[J]. 西南石油大学学报(自然科学版), 2008, 30(5): 11-16.
WANG Zhenyu, LI Ling, TAN Xiucheng, et al. Types and recognizable indicators of Ordovician carbonate rock Okarstification in Tarim Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(5): 11-16. DOI:10.3863/j.issn.1000-2634.2008.05.003 (in Chinese with English abstract)
[33]
肖玉茹, 王敦则, 沈杉平. 新疆塔里木盆地塔河油田奥陶系古洞穴型碳酸盐岩储层特征及其受控因素[J]. 现代地质, 2003, 17(1): 92-98.
XIAO Yuru, WANG Dunze, SHEN Shanping. The characteristics of Paleocave carbonate reservoir and its control factors in Ordovician of the Tahe Oil field in the Tarim Basin, Xinjiang[J]. Geoscience, 2003, 17(1): 92-98. DOI:10.3969/j.issn.1000-8527.2003.01.015 (in Chinese with English abstract)
[34]
贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997: 156-165.
JIA Chengzao. Structural features and hydrocarbon in Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1997: 156-165. (in Chinese)
[35]
杜金虎, 周新源, 李启明, 等. 塔里木盆地碳酸盐岩大油气区特征与主控因素[J]. 石油勘探与开发, 2011, 38(6): 652-661.
DU Jinhu, ZHOU Xinyuan, LI Qiming, et al. Characteristics and controlling factors of the large carbonate petroleum province in the Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2011, 38(6): 652-661. (in Chinese with English abstract)
[36]
郑晓丽, 安海亭, 王祖君, 等. 塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系[J]. 浙江大学学报(理学版), 2018, 45(2): 223-229.
ZHENG Xiaoli, AN Haiting, WANG Zujun, et al. The segmentation features of strike-slip fault and its relation with the fault and reservoirs in Halahatang Area, North Tarim Basin[J]. Journal of Zhejiang University (Science Edition), 2018, 45(2): 223-229. (in Chinese with English abstract)