地质力学学报  2020, Vol. 26 Issue (2): 151-166
引用本文
肖坤泽, 童亨茂. 走滑断层研究进展及启示[J]. 地质力学学报, 2020, 26(2): 151-166.
XIAO Kunze, TONG Hengmao. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 2020, 26(2): 151-166.
走滑断层研究进展及启示
肖坤泽1,2, 童亨茂1,2    
1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
2. 中国石油大学(北京)地球科学学院, 北京 102249
摘要:自走滑断层概念提出之后,走滑断层在地质科学研究上的重要性逐渐体现出来,并在几何学、运动学、动力学及其构造意义等方面取得了重要的认识,使得走滑断层的研究得到快速的发展,但其分类及其成因机制分析还存在一定的局限性。在走滑断层相关文献调研的基础上,文章对走滑断层原理、概念和相关术语发展历程进行了归纳总结,同时也对走滑断层的位移特征、识别标志、力学性质、走滑派生或伴生构造、走滑盆地特征、走滑断层分类及走滑断层实例等研究成果进行了系统性研究分析。在此基础上,结合走滑断层的力学机制,提出走滑断层新分类方式,并运用新的分类方式进一步对美国西海岸圣安德列斯断层、新西兰的阿尔卑斯断层和中国著名的郯庐断裂带以及阿尔金断裂带等典型断层进行简要分析。
关键词走滑断层    分类    动力学    转换断层    复式变换断层    
DOI10.12090/j.issn.1006-6616.2020.26.02.015     文章编号:1006-6616(2020)02-0151-16
Progress on strike-slip fault research and its significance
XIAO Kunze1,2, TONG Hengmao1,2    
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
Abstract: Since the emergence of the strike-slip fault concept, the importance of strike-slip fault in geological science research has gradually been realized. Understandings of strike-slip faults in terms of geometry, kinematics, dynamics and tectonic significance have accelerated the study on strike-slip fault. However, there are still some limitations in its classification and mechanism analysis. Based on the literature review of strike-slip fault, the principle, concept and related terms are summarized, then the displacement characteristics, identification marks, mechanical mechanism, strike-slip derived or associated structures, characteristics of strike-slip basins, classification and examples of strike-slip faults are analyzed. Combined with the mechanical mechanism of strike-slip fault, a new classification method of strike-slip fault is proposed, and a brief analysis of typical faults is made using the new classification method, such as the San Andreas fault on the west coast of the United States, the Alpine fault in New Zealand, the Tanlu fault and the Altyn Tagh fault in China.
Key words: strike-slip fault    classification    dynamics    transform fault    compound transfer fault    
0 引言

断层是地壳岩石(地质体)发生破裂并顺破裂面发生位移的一种构造,其广泛发育,是地壳中最重要的构造类型(徐开礼等,1989; Twiss et al., 1992)。走滑断层作为断层的三大类之一,自19世纪末被提出以来,其在地质研究上的重要性逐渐体现出来,吸引着无数学者对走滑断层进行研究,使得走滑断层的研究得到了快速地发展。经过一百多年的研究积累,已经取得了一系列的认识。

文章主要对走滑断层发展历史以及研究成果进行总结分析,其中包括:①走滑断层概念(Mckay, 1890, 1892; Suess, 1892; Noble, 1926, 1927; Freund, 1971; Sengör et al., 1985; Bates and Jackson, 1987; Sylvester, 1988; 徐开礼和朱志澄,1989徐嘉炜,1995陆克政等,2001漆家福等,2006)及其相关术语(Anderson, 1905; Reid et al., 1913; Gill, 1935; Kennedy, 1946; Moody and Hill, 1956, 1958; Wilson, 1965; Dahlstrom, 1969; Wilcox et al., 1973; Gibbs, 1983; Christie-Blick et al., 1985; Woodcock, 1986; Sylvester, 1988; Morley, 1990; Twiss and Moones, 1992; Mueller and Talling, 1997; 刘和甫, 1999, 2004; Escalona and Mann, 2006漆家福等,2006)的提出和发展;②走滑断层位移特征的识别(Gill, 1935; Billings and Rabbitt, 1947);③走滑断层识别标志(Crowell, 1962; Christie-Blick and Biddle, 1985; Harding et al., 1985; Woodcock and Fischer, 1986; Zolnai, 1991; 漆家福和陈发景,1995);④走滑派生或伴生构造(走滑应变椭圆)(Cloos, 1928; Riedel, 1929; Pakiser, 1960; Skempton, 1966; Clayton, 1966; Morgenstern and Tchalenko, 1967; Ramsay, 1967; Tchalenko and Ambraseys, 1970; Tchalenko et al., 1970; Harland, 1971; Wilcox et al., 1973; Crowell, 1974; Harding, 1974; Harding and Lowell, 1979; Aydin and Page, 1984; Christie-Blick and Biddle, 1985; Tuminas, 1988; Sylvester, 1988; Allen and Allen, 2005; 刘和甫等,1999);⑤走滑作用形成的盆地特征(Burchfiel and Stewart, 1966; Crowell, 1973, 1982; Aydin and Nur, 1982; Hempton and Dunne, 1984; Sylvester, 1988; Miall, 1990; 刘和甫,1993);⑥走滑断层的力学机制(Anderson, 1905; Riedel, 1929; McKinstry, 1953; Moody and Hill, 1956; Morgenstern and Tchalenko, 1967; Tchalenko, 1970; Tchalenko and Ambraseys, 1970; Freund, 1974; Aydin and Page, 1984; Sylvester, 1988; 徐嘉炜,1995刘和甫等,1999);⑦走滑断层的分类方法(Hill, 1959; Woodcock, 1986; Sylvester, 1988; Miall, 1990; 刘和甫等, 1999, 2004夏义平等,2007)。

文章主要对走滑断层发展历史以及研究成果进行总结分析,其中包括:①走滑断层概念(Mckay, 1890, 1892; Suess, 1892; Noble, 1926, 1927; Freund, 1971; Sengör et al., 1985; Bates and Jackson, 1987; Sylvester, 1988; 徐开礼和朱志澄,1989徐嘉炜,1995陆克政等,2001漆家福等,2006)及其相关术语(Anderson, 1905; Reid et al., 1913; Gill, 1935; Kennedy, 1946; Moody and Hill, 1956, 1958; Wilson, 1965; Dahlstrom, 1969; Wilcox et al., 1973; Gibbs, 1983; Christie-Blick et al., 1985; Woodcock, 1986; Sylvester, 1988; Morley, 1990; Twiss and Moones, 1992; Mueller and Talling, 1997; 刘和甫, 1999, 2004; Escalona and Mann, 2006漆家福等,2006)的提出和发展;②走滑断层位移特征的识别(Gill, 1935; Billings and Rabbitt, 1947);③走滑断层识别标志(Crowell, 1962; Christie-Blick and Biddle, 1985; Harding et al., 1985; Woodcock and Fischer, 1986; Zolnai, 1991; 漆家福和陈发景,1995);④走滑派生或伴生构造(走滑应变椭圆)(Cloos, 1928; Riedel, 1929; Pakiser, 1960; Skempton, 1966; Clayton, 1966; Morgenstern and Tchalenko, 1967; Ramsay, 1967; Tchalenko and Ambraseys, 1970; Tchalenko et al., 1970; Harland, 1971; Wilcox et al., 1973; Crowell, 1974; Harding, 1974; Harding and Lowell, 1979; Aydin and Page, 1984; Christie-Blick and Biddle, 1985; Tuminas, 1988; Sylvester, 1988; Allen and Allen, 2005; 刘和甫等,1999);⑤走滑作用形成的盆地特征(Burchfiel and Stewart, 1966; Crowell, 1973, 1982; Aydin and Nur, 1982; Hempton and Dunne, 1984; Sylvester, 1988; Miall, 1990; 刘和甫,1993);⑥走滑断层的力学机制(Anderson, 1905; Riedel, 1929; McKinstry, 1953; Moody and Hill, 1956; Morgenstern and Tchalenko, 1967; Tchalenko, 1970; Tchalenko and Ambraseys, 1970; Freund, 1974; Aydin and Page, 1984; Sylvester, 1988; 徐嘉炜,1995刘和甫等,1999);⑦走滑断层的分类方法(Hill, 1959; Woodcock, 1986; Sylvester, 1988; Miall, 1990; 刘和甫等, 1999, 2004夏义平等,2007)。

在此基础上,研究发现目前所提出的走滑断层的分类方式具有一定的局限性,主要表现为:分类界限不够明确,同一分类系统标准不统一、考虑因素不全面以及同一分类中不同类型具有包含、从属关系。从而对具体走滑断层类型的判定和识别造成困难。因此,文章以走滑断层的基本概念、原理、观点以及走滑断层的几何学、运动学、动力学以及构造意义为基础,根据走滑断层的动力学机制,对走滑断层提出新的分类方案,并运用新的分类方案对全球著名的走滑断层进行实例分析,进一步阐述了走滑断层的力学机理。

1 走滑断层相关术语的发展历程

关于走滑作用这一现象描述最早可以追溯到公元前347年Zechariah的著作中(Freund, 1971)。虽然书中没有明确提出走滑的概念,但Zechariah对相互错动的两盘山体进行了总体描述,因此可以将其看作是对走滑这一现象论述的起源(Sylvester, 1988)。

18世纪50年代,著名的瑞士地质学家Arnold Escher von der Linth可能是第一个发现走滑断层并对其进行初步描述的学者(Suess, 1892; Sengör et al., 1985)。

按照Freund(1971)的观点,Mckay(1890, 1892)最早将与地震相关的走滑现象记录并出版公布。随后在1906年旧金山大地震中,圣安德列斯断层突然发生了最大位移为4.7 m的右旋滑动,走滑这一现象从而在科学界得到充分印证(Hill, 1982; Sylvester, 1988)。

Noble(1926, 1927)通过对圣安德列斯断层区域的一些独特的非海相砂岩进行地层对比,研究走滑断层的走滑位移量,首次提出了走滑位移量可达数十千米,打破了以往断层位移量较小的观点,随后其他学者通过对不同的走滑断层研究认为走滑断层的位移量可达数百千米,例如圣安德列斯断层(Wallace, 1949; Hill and Dibble, 1953)、阿尔卑斯断层(Wellman, 1955)、死海裂谷(Quennell, 1958, 1959; Bartov et al., 1980)以及大格林断层(Kennedy, 1946),进一步促进了对走滑断层的认识。

随着对走滑断层认识的不断深入,其他相关术语也陆续提出。其中,平移断层(transcurrent fault)被用来描述火成岩、变质岩以及沉积岩中近乎直立的走滑断层(Geikie, 1905; Kennedy, 1946; Moody and Hill, 1956, 1958; Wilcox et al., 1973; Christie-Blick and Biddle, 1985),然而许多学者认为用平移断层描述走滑断层不能详细解释走滑断层成因上的关系,故将平移断层作为不切割整个岩石圈的走滑断层的统称(Sylvester, 1988);扭动断层(wrench fault)概念的提出(Moody and Hill, 1956)是用来描述区域性的、直立的、并卷入结晶基底的走滑断层(Kennedy, 1946)。

走滑断层(strike-slip fault)的基本定义不同学者有不一样的见解,Bates and Jackson(1987)将走滑断层定义为断层的主运动方向与断层的走向基本平行的断层(Sylvester, 1988徐开礼和朱志澄,1989徐嘉炜,1995漆家福等,2006);陆克政等(2001)认为走滑断层的基本含义是由扭应力或剪应力引起地壳或岩石圈沿着某些构造边界或特定的构造带发生走滑作用的断层。

对于走滑性质的断层,还提出了其他术语,包括:①Wilson(1965)提出的转换断层(transform fault),其作为重要的板块边界类型,是切穿岩石圈或地壳并调节板块之间运动的走滑断层;②Gibbs(1983)引入伸展盆地中的变换断层(transfer fault),将其作为伸展变形(或位移)的变换带;③Gill(1935)提出撕裂断层(tear fault)并进行定义,也称捩断层,随后Christie-Blick and Biddle(1985)将其定义为调节某一外来体内或与外来体相邻构造单元之间的差异位移,之后也用来描述与逆冲断层突然终止相关的走滑断层(Twiss and Moores, 1992; Mueller and Talling, 1997; Escalona and Mann, 2006),国内主要将撕裂断层定义为在逆冲断层系统中的横向或斜向断层,并与逆冲断层的位移过程有关的,具有走滑位移性质的断层(刘和甫, 1999, 2004漆家福等,2006)。

2 走滑断层的研究现状 2.1 走滑断层的位移特征

走滑断层的位移主要通过与走滑断层走向斜交的非水平地层(标志层)进行识别,也可以通过标志物的错动进行识别(图 1);但在其他复杂情况下会导致标志层在平面上或剖面上的视错动,称为断层效应(Gill, 1935; Billings and Rabbitt, 1947)。

a—地层走向与断层走向一致;b—地层走向与断层走向斜交 图 1 走滑断层与地层交互关系示意图(据Sylvester,1988修改) Fig. 1 ematic diagram of the interactive relationship between strike-slip fault and stratum(modified after Sylvester, 1988)
2.2 走滑断层的识别标志

走滑构造变形往往会形成一些特定的识别标志,也是识别走滑构造的基础。走滑断层识别标志分为剖面标志和平面标志。其中剖面标志有:正花状构造和负花状构造(图 2)(Christie-Blick and Biddle, 1985);海豚效应和丝带效应(图 3)(Zolnai, 1991);走滑断层内部构造和夹块(Zolnai, 1991);剖面上地层的不连续现象等(漆家福和陈发景,1995)。平面标志有:线性延伸或带状展布(Harding et al., 1985; Woodcock et al., 1986);走滑带两侧地质界线的水平错开(Crowell, 1962; Harding et al., 1973)等。

a—负花状构造;b—正花状构造图 图 2 花状构造示意图(据Christie-Blick and Biddle, 1985修改) Fig. 2 Schematic diagram of flower structure (modified after Christie-Blick and Biddle, 1985)

图 3 海豚效应和丝带效应示意图(据Zolnai, 1991修改) Fig. 3 Schematic diagram of dolphin effect and dextral ribbon effect (modified after Zolnai, 1991)
2.3 走滑断层的派生或伴生构造

走滑断层作用常形成派生或伴生构造,它们受沿走滑断裂带不同位置上若干因素的控制,其中包括走滑断层走向的变化及其排列和组合方式、岩石的力学性质、应力的大小和方向、应变速率、先存构造和滑动矢量方向及位移量等。

走滑派生或伴生构造的规律可以用走滑应变椭圆(图 4)来表达,最初来自Cloos(1928)Riedel(1929)的简单剪切物理模拟实验。相关的构造(图 4)包括:①主位移带(principal displacement zone,简称PDZ),即与走滑构造带走向一致、连续的走滑断层位移带(Tchalenko, 1970; Tchalenko and Ambraseys, 1970);②里德尔(R)剪切(Riedel shear),走滑方向与主位移带方向相同两者呈小角度(一般小于15°)相交,其夹角相当于岩石内摩擦角的一半(φ/2),锐角角顶指示本盘断块的运动方向(Tchalenko, 1970),也称为同向走滑断层(synthetic strike-slip fault)(Cloos, 1928);③共轭里德尔(R′)剪切(conjugated Riedel shear),走滑方向与主位移带反向相反,两者呈大角度相交,与R剪切共轭,共轭角通常为60°~70°(Tchalenko, 1970; Tchalenko and Ambraseys, 1970),也称为反向走滑断层(antithetic strike-slip fault)(Cloos, 1928);④同向剪切破裂(P),走滑方向及与主位移带的夹角同里德尔(R)剪切,但锐夹角角顶指向对盘断块的位移方向,也称为次级同向走滑断层(secondary synthetic strike-slip fault)(Skempton, 1966; Tchalenko, 1970; Tchalenko and Ambraseys, 1970);⑤张性(T)破裂(extension fracture),是剪切应力作用下产生的局部张性破裂,与主位移带大角度相交的延伸不长的正断层组或张节理组,走向与走滑应变椭圆中的局部伸展方向垂直(Tchalenko and Ambraseys, 1970);⑥雁行式褶皱(en echelon folds)和逆断层组,一般只在构造带中局部发育,走向与应变椭圆的局部收缩方向垂直(Ramsay, 1967Harding and Lowell, 1979);⑦Y剪切破裂与主位移带平行(Morgenstern and Tchalenko, 1967)。在走滑应变椭圆中,PDZ、R、P和Y剪切变形过程中相互作用,形成走滑断裂带(图 4)。

a—右行力偶产生的走滑应变椭圆(据Harding, 1974修改);b—右行走滑断层主位移带(PDZ)构造组合(据Allen and Allen, 2005修改) 图 4 右行走滑断层特征 Fig. 4 The features of the right-lateral (dextral) strike-slip fault (modified after Harding, 1974; Allen and Allen, 2005)

在走滑断层主位移带构造组合中,局部构造带走向和走滑矢量方向决定断裂带局部会聚和离散(Pakiser, 1960; Clayton, 1966; Crowell, 1973; Christie-Blick and Biddle, 1985; Allen and Allen, 2005),走滑会聚区域会造成收敛挤压或扭压,造成地壳缩短和隆起(Harland, 1971; Wilcox et al., 1973; Crowell, 1974);走滑离散区形成释放弯曲,并伴随地壳伸展,沉降以及拉分盆地的形成(Harland, 1971; Crowell, 1974; Sylvester, 1988);主位移构造带构造组合也受到R和P剪切作用的控制,并常伴生有正断层、褶皱、线性地垒、地堑块体等构造组合(图 4)(Allen and Allen, 2005)。

雁列褶皱通常在走滑断层附近出现,认为是剪切变形的结果(Sylvester, 1988; 刘和甫等, 1999),雁行褶皱可以发育在主走滑断层上方或附近一个相对狭窄而稳定性的区域内;也可以形成于两个走滑断层之间的广阔地带(Aydin and Page, 1984)。雁列褶皱排列的倾斜方向与剪切主应力方向相同(图 5)(Harding, 1974; Dibblee, 1977; Harding and Lowell, 1979; Harding and Tuminas, 1988),即右旋形成右阶褶皱,左旋形成左阶褶皱(Sylvester, 1988)。

a—右旋简单剪切下雁型褶皱;b—左旋简单剪切下雁型褶皱 图 5 简单剪切下雁型褶皱图(据Sylvester, 1988修改) Fig. 5 Geometry of en echelon folds of a simple shear (modified after Sylvester, 1988)
2.4 走滑断层作用与沉积盆地

走滑断层作用也可以控制盆地的形成,当走滑断层伸展弯曲时,形成走滑-拉分盆地(pull-apart basin)(Burchfiel and Stewart, 1966);当走滑断层挤压弯曲时,发育挤压山岭,形成走滑-挠曲盆地;走滑断层呈雁列时,形成盆地或山岭;走滑断层侧向分支时,发育盆地或山脊(Crowell, 1974; Aydin et al., 1982; Sylvester, 1988刘和甫,1993)。同时也有不同学者依据走滑断层边界断层的几何学和运动学对走滑盆地进行分类(Nilsen and Sylvester, 1999)。

在沉积盆地中,走滑盆地有个显著的特征,沉积中心的迁移方向与盆地的走滑运动方向一致,其中沉积物沉积特征为“威尼斯百叶窗”或“地层叠瓦状”(图 6)(Crowell, 1974, 1982; Hempton and Dunne, 1984)。

图 6 右旋走滑盆地沉积中心迁移示意图(据Crowell, 1982修改) Fig. 6 Schematic diagram of sedimentary center migration in the right-lateral strike-slip basin(modified after Crowell, 1982)
2.5 走滑断层作用的力学机制

目前,对走滑断层的力学机制分析主要运用纯剪切(pure shear)和简单剪切(simple shear)这两种模式解释(Aydin and Page, 1984; Sylvester, 1988; 徐嘉炜,1995; 刘和甫等,1999)。

纯剪切是Anderson(1905)为了解释均匀介质中断层形成与三个主应力轴关系的模型而提出的,也被称作Coulomb-Anderson模型。纯剪切模型中,一旦发生剪切破裂(N36°W),就一定会形成与之共轭的剪切破裂(N36°E)(图 7a),其中共轭破裂面的交线与应力场σ2一致,共轭破裂面的锐角平分线与应力场σ1的方向一致,共轭破裂面钝角平分线与应力场σ3的方向一致,纯剪切作用下应变主轴在变形过程中始终不旋转(图 7a)(Anderson, 1905; McKinstry, 1953; Moody and Hill, 1956; Aydin and Page, 1984; Sylvester, 1988)。

a—纯剪切;b—简单剪切 图 7 走向N36°W直立走滑断层相关构造平面图(据Aydin et al., 1984Sylvester, 1988修改) Fig. 7 Plan view of geometric relations among structures according to a vertical strike-slip fault which strikes N36°W(modified after Aydin et al., 1984; Sylvester, 1988)

简单剪切模型是Riedel(1929)提出的一种走滑断层力学模型(图 7b)。简单剪切模型中,主走滑位移带方向与剪切应力的方向一致,同时也会诱导出次级应力场,在局部挤压应力(σ1)和局部伸展应力(σ3)下形成次级破裂(R、R′、P、Y、T)及其他伴生构造(褶皱、正断层、逆断层),简单剪切变形过程中应变主轴一直旋转(图 7b)(Riedel, 1929; Skempton, 1966; Morgenstern and Tchalenko, 1967; Tchalenko, 1970; Tchalenko and Ambraseys, 1970; Wilcox et al., 1973; Freund, 1974; Sylvester, 1988)。

2.6 走滑断层分类方案

随着对走滑断层认识的不断深入,走滑断层的分类方式应运而生,走滑断层的分类方式很多,目前学术界主流的分类方式有,①Hill(1959)根据断层两盘的相对运动方向对走滑断层进行的分类:左旋走滑断层和右旋走滑断层;②Woodcock(1986)根据在板块构造中的位置对走滑断层进行的分类:洋中脊转换断层、与海沟相连的走滑断层、与楔入相关的走滑断层、边界转换断层;③Miall(1990)根据在板块构造边界的不同构造部位对走滑断层进行的划分,共分为四大类:板块边界转换断层、离散边缘转换断层、聚敛边缘平移断层、缝合带平移断层;④Sylvester(1988)根据板块构造上的位置及卷入深度对走滑断层分为两大类:板间转换断层和板内平移断层(仅限于地壳);⑤刘和甫等(1999)根据断层构造位置和卷入的深度对走滑断层的分类:转换断层、平移断层、变换断层、撕裂断层;⑥刘和甫等(2004)结合油气勘探中盆地—区带—圈闭三个层次对走滑断层进行的分类:转换断层、变换断层、撕裂断层;⑦夏义平等(2007)按照断层规模和对石油地质控制作用将走滑断层分为五类:板块级走滑断层、盆地级走滑断层、区带级走滑断层、圈闭级走滑断层、显微级走滑断层。

总的来说,通过对不同学者走滑断层分类方式总结分析,认为目前存在的主要问题是:走滑断层分类界限不够明确、同一分类体系中分类标准不一致、考虑因素不系统、在分类结果中具有包含、从属关系,从而使得对具体的走滑断层类型的判别造成困难,例如在Woodcock(1986)Miall(1990)的分类中只考虑了板块边界上的走滑断层;在Sylvester(1988)刘和甫等(1999, 2004)的分类中撕裂断层属于变换断层,同一级别分类体系中具有包含关系;在夏义平等(2007)的分类中考虑因素太少(只有规模这个要素),过于笼统;从而易对走滑断层类型的准确识别造成困难。

因此,在已有的分类基础上,文章提出走滑断层新的分类方案,首先根据动力学机制把走滑断层划分分为两大类:主动走滑断层(active strike-slip fault)和被动走滑断层(passive strike-slip fault)。主动走滑断层是指在走滑应力体制下形成的走滑断层(纯剪切或简单剪切变形);被动走滑断层是指在非走滑应力体制(伸展应力体制和挤压应力体制)下形成的走滑断层(简单剪切变形)。被动走滑断层可分为转换断层和变换断层,其中变换断层可进一步划分为单式变换断层和复式变换断层(童亨茂等,2015),详细的分类方案另文报道。

表 1 走滑断层新的分类方案 Table 1 A new classification method of strike-slip faults
3 典型走滑断层实例及其类型分析

走滑断层的研究离不开理论与实践的结合,不同学者依据理论对走滑断层实例进行研究分析,同时也通过实例的研究进一步得到了新的认识。走滑断层作为目前研究的热点,实例有很多,如美国西海岸的圣安德列斯断层,中国东部的郯庐断裂、西部的阿尔金断裂等,这一系列走滑断层实例对走滑断层认识的提高和理论验证提供了更多的数据依据。

美国加利福尼亚海岸圣安德列斯断层是世界上最著名的走滑断层之一,是太平洋板块边界和北美板块边界之间的右旋转换断层系统(Crowell, 1952, 1962; Allen, 1957; Allen et al., 1960; Crowall and Sylvester, 1979; Zoback and Zoback, 1980; Zoback et al., 1987; Wakabayashi, 1999),目前对圣安德列斯断层的研究已经从几何学(Dickinson et al., 1979a, 1979b; Andrews, 1980; Mandelbrot, 1983; King, 1983; Aviles et al., 1987; Okubo and Aki, 1987)、运动学(Hill and Dibble, 1953; Hamilton and Myers, 1966; Freund, 1970; Zoback and Zoback, 1980; Zoback et al., 1987; Mount and Suppe, 1987; Wesnousky, 1988; Aydin and Schultz, 1990; Khoshmanesh and Shirzaei, 2018)以及动力学(Moody and Hill, 1956; Hamilton, 1969; Atwater, 1970; Molnar and Atwater, 1973; Freund, 1974; Garfunkel, 1974; Coney and Reynolds, 1977; Bohannon and Howell, 1982; Argus and Gordon, 1991, 2001; Henstock et al., 1997; Wakabayashi, 1999)方面分析取得了重要的进展;同时也从古地磁等方面进行过相关研究(Teissere and Beck, 1973; Beck, 1976; Simpson and Cox, 1977),该断层是世界上研究程度最高的走滑断层。通过对圣安德列斯断层在中新世到上新世时期走滑位移量的研究,基本认为在该时期的右旋走滑位移量将近300 km,性质为转换断层(Wallace, 1949; Hill and Dibblee, 1953; Allen, 1957; Allen et al., 1960; Fletcher, 1967; Ehlig et al., 1975; Crowell, 1980, 1989),目前,对该断层的基本认识没有太多的争议。

郯庐断裂带作为中国东部一条巨大的北北东走向的断裂带,自中生代以来经历过长期、复杂的演化(朱光等,2001)。目前多数学者认为该断裂带起源于华北和华南板块的碰撞,但对于其具体的形成机制还存在不同的观点(Zhang et al., 1984; Hsü et al., 1987; Xu et al., 1987; Lin and Fullex, 1990; Okay et al., 1992; Yin and Nie, 1993; Li, 1994; Chung, 1999; Gilder et al., 1999; Wang et al., 2003; Zhu et al., 2009)。目前对郯庐断裂带走滑方式的研究认识有很多,具有相对比较统一的观点为:中生代为左旋走滑(徐嘉炜,1985徐嘉炜和马国锋,1992万天丰等,1996陈宣华等,2000王小凤,2000朱光等, 2001, 2003张岳桥和董树文,2008),新生代为右旋走滑。但对于郯庐断裂带新生代右旋走滑位移量的大小及其成因机制具有很大的争议(Okay et al., 1992; Yin and Nie, 1993; Li, 1994; Gilder et al., 1999; 陈宣华等,2000王小凤,2000施炜等,2003朱光等,2006孙晓猛等,2010)。文章研究发现,郯庐断裂带在新生代时期为变换断层带(被动走滑断层带,断层的活动由渤海湾盆地的伸展作用引起),其中的每一条断层均为复式变换断层(童亨茂等,2015),起到传递或调节伸展位移的作用。由于复式变换断层不同段落的位移量本身就不一致(童亨茂等,2015),这样,郯庐断裂带不同段落位移量不同的争议就可以得到解决。另外,郯庐断裂带在新生代早期(古新世和始新世时期)主要表现为伸展变形,没有明显的走滑变形,把郯庐断裂简单地认为是一条走滑断裂带是值得商榷的。

阿尔金断裂带是中国西部一条规模巨大的、总体呈北东东向、现在仍在活动的走滑断裂带(Molnar and Tapponnier, 1975; Tapponnier and Mdnar, 1977)。阿尔金断裂带目前研究的焦点为断裂带活动方式及起始时间(Vincent and Allen, 1999; Yue and Liou, 1999; 刘永江等,2001Wang et al., 2005; 李海兵等,2006; Liu et al., 2007吕宝凤等,2019)、新生代以来走滑活动历史以及走滑位移量大小(Wang, 1997; Meyer et al., 1998; Yue et al., 2001, 2005; 陈正乐, 2001, 2006; Yin et al., 2002; Sun et al., 2005)、第四纪以来的滑移速率(England and Molnar, 1997; Bendick et al., 2000; Zhang et al., 2004, 2007; Elliott et al., 2008)等。与郯庐断裂带类似,文章研究认为阿尔金断裂在新生代时期也应该是变换断层带(被动走滑断层带,断层的活动是由于印度大陆和欧亚大陆的碰撞作用引起),调节或传递昆仑山以北、阿尔金山以东地区的挤压变形或逆冲位移。由于柴达木盆地在新生代发生了明显的挤压构造变形,不断地吸收挤压构造变形量,导致阿尔金断裂的左旋走滑位移量自西南向东北方向不断减小,这样位移量大小的争议自然也可以得到解决。另外,阿尔金断裂的左旋走滑活动导致塔里木盆地整体的顺时针旋转的认识自然也是值得商榷的。

此外,世界上著名的走滑断层还有新西兰阿尔卑斯断层(Alpine fault)(Laubscher, 1971; Ratschbacher, 1986);苏格兰大格林断层(Great Glen fault)(Kennedy, 1946);死海断层(Dead Sea fault) (Bartov et al., 1980);阿拉斯加迪那里断层(Denali fault)(Amand, 1957);阿富汗恰曼断层(Chaman fault)(Wellman, 1966);红河断层(Tapponnier et al., 1982)等。

4 讨论

在对目前走滑断层研究成果调研的基础上,文章进一步对走滑断层的发展历程、研究成果进展进行梳理,方便读者对于走滑断层相关内容的研究能够追根溯源;但由于篇幅有限,文章只对走滑断层研究进展的主要成果进行了论述。通过对走滑断层分类方案的调研,研究发现目前提出的走滑断层的分类方式虽多,但是都具有一定的局限性,因此,笔者从走滑断层的形成机理出发,依据走滑断层的动力学机制对走滑断层进行分类,并提出新的分类模式,旨在从走滑断层形成的根源出发对走滑断层进行解释,希望能进一步提高对走滑断层不同类型的认识。

走滑断层位移量的研究是目前走滑断层研究的重点和难点,通过对相关文献调研发现,目前对走滑断层位移量的研究主要是通过对断裂带中某一段地质参考点(构造带和岩相带等)、岩石学特征分析以及同位素年代学研究等方法进行测量的(许志琴等,1999; Ritts and Biffi, 2000; Meng et al., 2001; Zhang et al., 2001; Cowgill et al., 2003任收麦等,2003; Liu et al., 2007李海兵等,2007房璐等,2017)。一方面,这些方法本身具有一定程度的误差;另一方面,更主要的是已有的走滑断层位移量分布的基础理论还存在局限,这是目前对同一条断层走滑位移量存在较大争议的主要原因。

经研究表明,大位移量的走滑断层均是被动走滑断层(包括转换断层和变换断层)。通常转换断层主要传递板块间扩张(大陆裂谷或洋中脊)或汇聚(大洋板块俯冲或大陆碰撞)产生的位移,由于转换断层位移的传递对象只有两个(目前还未发现连接两个以上板块边界的转换断层),同一条转换断层(如圣安德列斯断层)的走滑位移量在不同段落是一致的,因此,走滑位移量的认识也很少存在争议(如圣安德列斯断层)。而变换断层大多传递多个构造的变形(或位移),即大位移量的变换断层一般都是复式变换断层,同一断层(或断层带)的走滑位移量在不同段落本身是不一致的(如阿尔金断裂、郯庐断裂),如果按走滑位移量一致的观点去研究自然会产生争议。随着复式变换断层的概念被学术界广泛接受后,有关走滑断层位移量的争议可能会逐渐减少乃至消失。

5 结论

(1) 走滑断层概念的发展经历了比较漫长的历史,走滑断层在几何学、运动学、动力学及其构造意义等方面取得了重要认识和进展,但其分类及其成因机制分析还存在一定的局限性。

(2) 文章从走滑断层的形成机理出发,依据动力学机制对走滑断层进行分类,提出了新的动力学分类方案,将走滑断层分为两大类:主动走滑断层和被动走滑断层。被动走滑断层划分为转换断层和变换断层两个亚类,其中变换断层可进一步划分为单式变换断层和复式变换断层。转换断层不同段落的走滑位移量理论上是一致的,而复式变换断层传递多个构造的变形(或位移),同一断层(或断层带)的走滑位移量在不同段落本身是不一致的。

参考文献/References
ALLEN C R. San Andreas fault zone in san Gorgonio pass, southern California[J]. GSA Bulletin, 1957, 68(3): 315-350. DOI:10.1130/0016-7606(1957)68[315:SAFZIS]2.0.CO;2
ALLEN C R, SILVER L T, STEHLI F G. Agua Blanca fault: a major transverse structure of northern Baja California, Mexico[J]. GSA Bulletin, 1960, 71(4): 467-482. DOI:10.1130/0016-7606(1960)71[467:ABFMTS]2.0.CO;2
ALLEN P A, ALLEN J R. Basin analysis: principles and applications[M]. 2nd ed. Oxford: Blackwell Scientific Publication, 2005: 201-218.
AMAND P S. Geological and geophysical synthesis of the tectonics of portions of British Columbia, the Yukon Territory, and Alaska[J]. GSA Bulletin, 1957, 68(10): 1343-1370. DOI:10.1130/0016-7606(1957)68[1343:GAGSOT]2.0.CO;2
ANDERSON E M. The dynamics of faulting[J]. Transactions of the Edinburgh Geological Society, 1905, 8(3): 387-402. DOI:10.1144/transed.8.3.387
ANDREWS D J. A stochastic fault model: 1. Static case[J]. Journal of Geophysical Research, 1980, 85(B7): 3867-3877. DOI:10.1029/JB085iB07p03867
ARGUS D F, GORDON R G. Current Sierra Nevada-North America motion from very long baseline interferometry: implications for the kinematics of the western United States[J]. Geology, 1991, 19(11): 1085-1088.
ARGUS D F, GORDON R G. Present tectonic motion across the Coast Ranges and San Andreas fault system in central California[J]. GSA Bulletin, 2001, 113(12): 1580-1592. DOI:10.1130/0016-7606(2001)113<1580:PTMATC>2.0.CO;2
ATWATER T. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America[J]. GSA Bulletin, 1970, 81(12): 3513-3536. DOI:10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2
AVILES C A, SCHOLZ C H, BOATWRIGHT J. Fractal analysis applied to characteristic segments of the San Andreas fault[J]. Journal of Geophysical Research, 1987, 92(B1): 331-344. DOI:10.1029/JB092iB01p00331
AYDIN A, NUR A. Evolution of pull-apart basins and their scale independence[J]. Tectonics, 1982, 1(1): 91-105.
AYDIN A, PAGE B M. Diverse Pliocene-Quaternary tectonics in a transform environment, San Francisco Bay region, California[J]. GSA Bulletin, 1984, 95(11): 1303-1317. DOI:10.1130/0016-7606(1984)95<1303:DPTIAT>2.0.CO;2
AYDIN A, SCHULTZ R A. Effect of mechanical interaction on the development of strike-slip faults with echelon patterns[J]. Journal of Structural Geology, 1990, 12(1): 123-129. DOI:10.1016/0191-8141(90)90053-2
BARTOV Y, STEINITZ G, EYAL M, et al. Sinistral movement along the Gulf of Aqaba-its age and relation to the opening of the Red Sea[J]. Nature, 1980, 285(5762): 220-222. DOI:10.1038/285220a0
BATES R L, JACKSON J A. Glossary of geology[M]. 1987.
BECK M E. Discordant paleomagnetic pole positions as evidence of regional shear in the western Cordillera of North America[J]. American Journal of Science, 1976, 276(6): 694-712. DOI:10.2475/ajs.276.6.694
BENDICK R, BILHAM R, FREYMUELLER J, et al. Geodetic evidence for a low slip rate in the Altyn Tagh fault system[J]. Nature, 2000, 404(6773): 69-72. DOI:10.1038/35003555
BILLINGS M P, RABBITT J C. Chemical analyses and calculated modes of the Oliverian magma series, Mt. Washington quadrangle, New Hampshire[J]. GSA Bulletin, 1947, 58(7): 573-596. DOI:10.1130/0016-7606(1947)58[573:CAACMO]2.0.CO;2
BOHANNON R G, HOWELL D G. Kinematic evolution of the junction of the San Andreas, Garlock, and Big Pine faults, California[J]. Geology, 1982, 10(7): 358-363. DOI:10.1130/0091-7613(1982)10<358:KEOTJO>2.0.CO;2
BURCHFIEL B C, STEWART J H. "Pull-apart" origin of the central segment of Death Valley, California[J]. GSA Bulletin, 1966, 77(4): 439-442. DOI:10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2
CHEN X H, WANG X F, ZHANG Q, et al. Geochronologic study on the formation and evolution of Tan-Lu fault[J]. Journal of Changchun University of Science and Technology, 2000, 30(3): 215-220. (in Chinese with English abstract)
CHEN Z L, ZHANG Y Q, WANG X F, et al. Fission track dating of apatite constrains on the Cenozoic uplift of the Altyn Tagh mountain[J]. Acta Geoscientia Sinica, 2001, 22(5): 413-418. (in Chinese with English abstract)
CHEN Z L, GONG H L, LI L, et al. Cenozoic uplifting and exhumation process of the Altyn Tagh mountains[J]. Earth Science Frontiers, 2006, 13(4): 91-102. (in Chinese with English abstract)
CHRISTIE-BLICK N, BIDDLE K T, 1985. Deformation and basin formation along strike-slip faults[M]//BIDDLE K T, CHRISTIE-BLICK N. Strike-Slip Deformation, Basin Formation, and Sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication, 37: 1-34.
CHUNG S L. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between North and South China[J]. The Journal of Geology, 1999, 107(3): 301-312. DOI:10.1086/314348
CLAYTON L. Tectonic depressions along the hope fault, a transcurrent fault in North Canterbury, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1966, 9(1-2): 95-104. DOI:10.1080/00288306.1966.10420198
CONEY P J, REYNOLDS S J. Cordilleran benioff zones[J]. Nature, 1977, 270(5636): 403-406. DOI:10.1038/270403a0
COWGILL E, YIN A, HARRISON T M, et al. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(B7): 2346.
CROWELL J C. Probable large lateral displacement on San Gabriel Fault, southern California[J]. AAPG Bulletin, 1952, 36(10): 2026-2035.
CROWELL J C. Displacement along the san Andreas fault, California[M]. California: Geological Society of America, 1962: 1-58.
CROWELL J C. Origin of Late Cenozoic Basins in Southern California: ABSTRACT[J]. AAPG Bulletin, 1973, 57(4): 774.
CROWELL J C, 1974. Sedimentation along the San Andreas fault, California[M]//DOTT R H, SHAVER R H. Modern and Ancient Geosynclinal Sedimentation. Tulsa, Oklahoma: Society of Economic Paleontologists and Mineralogists Special Publications: 292-303.
CROWELL J C, SYLVESTER A G, 1979. Introduction to the San Andreas-Salton Trough juncture[M]//CROWELL J C., and SYLVESTER A G, eds. Tectonics of the juncture between the San Andreas fault system and the Salton Trough, southeastern California-A guidebook: University of California: Department of Geological Sciences: 1-14.
CROWELL J C. Juncture of San Andreas transform system and Gulf of California rift[J]. Oceanologica Acta, 1981, 3: 137-141.
CROWELL J C, 1982. The tectonics of Ridge basin, southern California[M]//CROWELL J C, LINK M H. Geologic History of Ridge Basin, Southern California. Los Angeles: Pacific Section, Society of Economic Paleontologists and Mineralogists: 25-41.
DAHLSTROM C D A. Balanced cross sections[J]. Canadian Journal of Earth Sciences, 1969, 6(4): 743-757. DOI:10.1139/e69-069
DIBBLEE T W., 1977. Strike-slip tectonics of the San Andreas fault and its role in Cenozoic basin evolvement[M]: In NILSEN T H. Late Mesozoic and Cenozoic Sedimentation and Tectonics in California. Bakersfield CA: San joaquin Geological Society: 26-38.
DICKINSON W R, SNYDER W S. Geometry of triple junctions related to San Andreas transform[J]. Journal of Geophysical Research, 1979a, 84(B2): 561-572. DOI:10.1029/JB084iB02p00561
DICKINSON W R, SNYDER W S. Geometry of subducted slabs related to San Andreas transform[J]. The Journal of Geology, 1979b, 87(6): 609-627. DOI:10.1086/628456
EHLIG P L, EHLERT K W, CROWE B M, 1975. Offset of the upper Miocene Caliente and Mint Canyon Formations along the San Gabriel and San Andreas faults[M]//CROWELL J C. San Andreas fault in Southern California. Sacramento: Division of Mines and Geology: 83-92.
ELLIOTT J R, BIGGS J, PARSONS B, et al. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays[J]. Geophysical Research Letters, 2008, 35(12): L12309.
ENGLAND P, MOLNAR P. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults[J]. Geophysical Journal International, 1997, 130(3): 551-582. DOI:10.1111/j.1365-246X.1997.tb01853.x
ESCALONA A, MANN P. Tectonic controls of the right-lateral Burro Negro tear fault on Paleogene structure and stratigraphy, northeastern Maracaibo Basin[J]. AAPG Bulletin, 2006, 90(4): 479-504. DOI:10.1306/10070505032
FANG L, WU Z P, LI W, et al. The development characteristics of strike-slip faults and the estimation of strike-slip displacements of the eastern Liaodong bay depression[J]. Journal of Geomechanics, 2017, 23(3): 459-466. (in Chinese with English abstract)
FREUND R. Rotation of strike slip faults in Sistan, southeast Iran[J]. The Journal of Geology, 1970, 78(2): 188-200. DOI:10.1086/627500
FREUND R. The Hope Fault: a strike slip fault in New Zealand[J]. New Zealand Geological Survey Bulletin, 1971, s.86: 1-49.
FREUND R. Kinematics of transform and transcurrent faults[J]. Tectonophysics, 1974, 21(1-2): 93-134. DOI:10.1016/0040-1951(74)90064-X
GARFUNKEL Z. Model for the late Cenozoic tectonic history of the Mojave Desert, California, and for its relation to adjacent regions[J]. GSA Bulletin, 1974, 85(12): 1931-1944.
GIBBS A D. Balanced cross-section construction from seismic sections in areas of extensional tectonics[J]. Journal of Structural Geology, 1983, 5(2): 153-160. DOI:10.1016/0191-8141(83)90040-8
GEIKIE J. Structural and field geołogy[M]. New York: D. Van Nostrand Company, 1905: 435.
GILDER S A, LELOUP P H, COURTILLOT V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data[J]. Journal of Geophysical Research, 1999, 104(B7): 15365-15390. DOI:10.1029/1999JB900123
GILL J E. Flaws and tear faults[J]. American Journal of Science, 1935, 30(180): 553-554.
HAMILTON W. Mesozoic California and the underflow of Pacific mantle[J]. GSA Bulletin, 1969, 80(12): 2409-2430. DOI:10.1130/0016-7606(1969)80[2409:MCATUO]2.0.CO;2
HAMILTON W, MYERS W B. Cenozoic tectonics of the western United States[J]. Reviews of Geophysics, 1966, 4(4): 509-549. DOI:10.1029/RG004i004p00509
HARDING P T. Petroleum traps associated with wrench faults[J]. AAPG Bulletin, 1974, 58(7): 1290-1304.
HARDING T P, LOWELL J D. Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum provinces[J]. AAPG Bulletin, 1979, 63(7): 1016-1058.
HARDING T P, TUMINAS A C. Interpretation of footwall (lowside) fault traps sealed by reverse faults and convergent wrench faults[J]. AAPG Bulletin, 1988, 72(6): 738-757.
HARDING T P, VIERBUCHEN R C, CHRISTIE-BLICK N, 1985. Structural styles, plate-tectonic settings, and hydrocarbon traps of divergent (transtensional) wrench faults[M]//BIDDLE K T, CHRISTIE-BLICK N. Strike-Slip Deformation, Basin Formation, and Sedimentation. Tulsa: SEPM Society for Sedimentary Geology: 51-77.
HARLAND W B. Tectonic transpression in Caledonian Spitsbergen[J]. Geological Magazine, 1971, 108(1): 27-41. DOI:10.1017/S0016756800050937
HEMPTON M R, DUNNE L A. Sedimentation in pull-apart basins: active examples in eastern Turkey[J]. The Journal of Geology, 1984, 92(5): 513-530. DOI:10.1086/628889
HENSTOCK T J, LEVANDER A, HOLE J A. Deformation in the lower crust of the San Andreas fault system in northern California[J]. Science, 1997, 278(5338): 650-653. DOI:10.1126/science.278.5338.650
HILL D P. Contemporary block tectonics, California and Nevada[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B7): 5433-5450. DOI:10.1029/JB087iB07p05433
HILL M L. Dual classification of faults: geological notes[J]. AAPG Bulletin, 1959, 43(1): 217-221.
HILL M L, DIBBLEE JR T W. San Andreas, Garlock, and Big Pine faults, California: a study of the character, history, and tectonic significance of their displacements[J]. GSA Bulletin, 1953, 64(4): 443-458. DOI:10.1130/0016-7606(1953)64[443:SAGABP]2.0.CO;2
HSÜ K J, WANG Q C, LI J L, et al. Tectonic evolution of Qinling mountains, China[J]. Eclogae Geologicae Helvetiae, 1987, 80(3): 735-752.
KENNEDY W Q. The great glen fault[J]. Quarterly Journal of the Geological Society, 1946, 102(1-4): 41-76. DOI:10.1144/GSL.JGS.1946.102.01-04.04
KHOSHMANESH M, SHIRZAEI M. Multiscale dynamics of aseismic slip on central San Andreas Fault[J]. Geophysical Research Letters, 2018, 45(5): 2274-2282. DOI:10.1002/2018GL077017
KING G. The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-Value[J]. Pure and Applied Geophysics, 1983, 121(5-6): 761-815.
LAUBSCHER H P. The large-scale kinematics of the western Alps and the northern Apennines and its palinspastic implications[J]. American Journal of Science, 1971, 271(3): 193-226. DOI:10.2475/ajs.271.3.193
LI H B, XU Z Q, YANG J S, et al. The maximum cumulative strike-slip displacement of the Altyn Tagh fault:900 km?[J]. Geological Bulletin of China, 2007, 26(10): 1288-1298. (in Chinese with English abstract)
LI H B, YANG J S, XU Z Q, et al. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4): 59-79. (in Chinese with English abstract)
LI Z X. Collision between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault[J]. Geology, 1994, 22(8): 739-742. DOI:10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
LIN J, FULLER M D. Palaeomagnetism, North China and South China collision, and the Tan-lu fault[J]. Philosophical Transactions of the Royal Society A, 1990, 331(1620): 589-598.
LIU H F. Dynamic classification of sedimentary basins and their structural styles[J]. Earth Science-Journal of China University of Geosciences, 1993, 18(6): 699-724. (in Chinese with English abstract)
LIU H F, XIA Y P, YIN J Y, et al. Coupling mechanism of strike-slip orogen and basin[J]. Earth Science Frontiers, 1999, 6(3): 121-132. (in Chinese with English abstract)
LIU H F, LI X Q, LIU L Q, et al. Petroleum play analysis and strike slip system basin-mountain coupling[J]. Geoscience, 2004, 18(2): 139-150. (in Chinese with English abstract)
LIU Y J, GE X H, YE H W, et al. Strike-slip model for Altyn Tagh fault developed since Late Mesozoic[J]. Acta Geoscientia Sinica, 2001, 22(1): 23-28. (in Chinese with English abstract)
LIU Y J, NEUBAUER F, GENSER J, et al. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China[J]. Journal of Asian Earth Sciences, 2007, 29(2-3): 243-252. DOI:10.1016/j.jseaes.2006.03.002
LU K Z, ZHU X M, QI J F. Analysis of petroliferous basin[M]. Dongying: China of University Petroleum Press, 2001: 135-152. (in Chinese)
LYU B F, WU Q, YANG Y Q. Characteristics of the "brush structure system" and a primary analysis on its formation dynamic mechanism in the eastern central uplift belt, Tarim Busin[J]. Journal of Geomechanics, 2009, 25(6): 1025-1035. (in Chinese with English abstract)
MANDELBROT B B. The fractal geometry of nature[M]. New York: WH Freeman, 1983: 51.
MCKAY A, 1890. On the earthquakes of September 1888, in the Amuri and Marlborough Districts of the South Island[G]. New Zealand Geological Survey Report of Geological Explorations 1888-1889, 20: 1-16.
MCKAY A, 1892. On the geology of Marlborough and south-east Nelson[G]. New Zealand Geological Survey Report of Geological Explorations 1890-1891, 21: 1-28.
MCKINSTRY H E. Shears of the second order[J]. American Journal of Science, 1953, 251(6): 401-414. DOI:10.2475/ajs.251.6.401
MENG Q R, HU J M, YANG F Z. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China[J]. Terra Nova, 2001, 13(2): 86-91. DOI:10.1046/j.1365-3121.2001.00320.x
MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47. DOI:10.1046/j.1365-246X.1998.00567.x
MIALL A D. Principles of sedimentary basin analysis[M]. 2nd ed. New York: Springer, 1990: 367-465.
MOLNAR P, ATWATER T. Relative motion of hot spots in the mantle[J]. Nature, 1973, 246(5431): 288-291. DOI:10.1038/246288a0
MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. DOI:10.1126/science.189.4201.419
MOODY J D, HILL M J. Wrench-fault tectonics[J]. GSA Bulletin, 1956, 67(9): 1207-1246. DOI:10.1130/0016-7606(1956)67[1207:WT]2.0.CO;2
MOODY J D, HILL M J. Wrench-fault tectonics: a response[J]. GSA Bulletin, 1958, 69(7): 929-930. DOI:10.1130/0016-7606(1958)69[929:WTAR]2.0.CO;2
MORGENSTERN N R, TCHALENKO J S. Microscopic structures in kaolin subjected to direct shear[J]. Géotechnique, 1967, 17(4): 309-328. DOI:10.1680/geot.1967.17.4.309
MORLEY C K, NELSON R A, PATTON T L. Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts[J]. AAPG Bulletin, 1990, 74(8): 1234-1253.
MOUNT V S, SUPPE J. State of stress near the San Andreas fault: implications for wrench tectonics[J]. Geology, 1987, 15(12): 1143-1146. DOI:10.1130/0091-7613(1987)15<1143:SOSNTS>2.0.CO;2
MUELLER K, TALLING P. Geomorphic evidence for tear faults accommodating lateral propagation of an active fault-bend fold, Wheeler Ridge, California[J]. Journal of Structural Geology, 1997, 19(3-4): 397-411. DOI:10.1016/S0191-8141(96)00089-2
NILSEN T H, SYLVESTER A G. Strike-slip basins: part 1[J]. The Leading Edge, 1999, 18(10): 1146-1152. DOI:10.1190/1.1438170
NOBLE L F. The San Andreas rift and some other active faults in the desert region of southeastern California[J]. Carnegie Institution of Washington Year Book, 1926, 25: 415-428.
NOBLE L F. San Andreas rift and some other active faults in the desert region of southeastern California[J]. Seismological Society of America Bulletin, 1927, 17: 25-39.
OKAY A I, CELALŠENGÖR A M. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China[J]. Geology, 1992, 20(5): 411-414. DOI:10.1130/0091-7613(1992)020<0411:EFITRE>2.3.CO;2
OKUBO P G, AKI K. Fractal geometry in the San Andreas fault system[J]. Journal of Geophysical Research, 1987, 92(B1): 345-355. DOI:10.1029/JB092iB01p00345
PAKISER L C. Transcurrent faulting and volcanism in Owens Valley, California[J]. Geological Society of America Bulletin, 1960, 71(2): 153-160. DOI:10.1130/0016-7606(1960)71[153:TFAVIO]2.0.CO;2
QI J F, CHEN F J. Structural analysis for Liaodongwan-Xialiaohe cenozoic rifting basin[M]. Beijing: Geological Publishing House, 1995: 48. (in Chinese)
QI J F, XIA Y P, YANG Q. Structural analysis in the oil province[M]. Beijing: Petroleum Industry Press, 2006: 95-111. (in Chinese)
QUENNELL A M. The structural and geomorphic evolution of the Dead Sea Rift[J]. Quarterly Journal of the Geological Society, 1958, 114(1-4): 1-24. DOI:10.1144/gsjgs.114.1.0001
QUENNELL A M, 1959. Tectonics of the Dead Sea rift[C], in International Geological Congress, 20th, Mexico City: Association of the Geological Service of Africa, 385-405.
RAMSAY J G. Folding and fracturing of rocks[M]. New York: McGraw-Hill, 1967: 1-568.
RATSCHBACHER L. Kinematics of Austro-Alpine cover nappes: changing translation path due to transpression[J]. Tectonophysics, 1986, 125(4): 335-356. DOI:10.1016/0040-1951(86)90170-8
REID H F, DAVIS W M, LAWSON A C, et al. Report of the committee on the nomenclature of faults[J]. Geological Society of America Bulletin, 1913, 24(1): 163-186. DOI:10.1130/GSAB-24-163
REN S M, GE X H, LIU Y J. Progress in Altyn fault belts research[J]. Advance in Earth Sciences, 2003, 18(3): 386-391. (in Chinese with English abstract)
RIEDEL W. Zur mechanik geologischer brucherscheinungen[J]. Zentral-blatt für Mineralogie, Geologie und Paleontologie B, 1929, 8: 345-368.
RITTS B D, BIFFI U. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China[J]. Geological Society of America Bulletin, 2000, 112(1): 61-74. DOI:10.1130/0016-7606(2000)112<61:MOPJBD>2.0.CO;2
ŞENGÖR A M C, GÖRVR N, ŞAROĞLU F, 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: turkey as a case study[M]//BIDDLE K T, CHRISTIE-BLICK N. Strike-slip Deformation, Basin Formation and Sedimentation. Tulsa: Special Publications, SEPM Society for Sedimentary Geology: 227-264.
SHI W, ZHANG Y Q, DONG S W. Quaternary activity and segmentation behavior of the middle portion of the Tan-Lu Fault zone[J]. Acta Geoscientia Sinica, 2003, 24(1): 11-18. (in Chinese with English abstract)
SIMPSON R W, COX A. Paleomagnetic evidence for tectonic rotation of the Oregon Coast Range[J]. Geology, 1977, 5(10): 585-589. DOI:10.1130/0091-7613(1977)5<585:PEFTRO>2.0.CO;2
SKEMPTON A W, 1966. Some observations on tectonic shear zones[C]//Proceedings of the 1st ISRM Congress. Lisbon, Portugal: International Society for Rock Mechanics and Rock Engineering: 329-335.
SUESS E. Das anlitz der erde[M]. Vienna: F. Tempsky, 1892: 1-778.
SUN J M, ZHU R X, AN Z S. Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235(3-4): 641-653. DOI:10.1016/j.epsl.2005.04.034
SUN X M, WANG S Q, WANG Y D, et al. The structural feature and evolutionary series in the northern segment of Tancheng-Lujiang fault zone[J]. Acta Petrologica Sinica, 2010, 26(1): 165-176. (in Chinese with English abstract)
SYLVESTER A G. Strike-slip faults[J]. Geological Society of America Bulletin, 1988, 100(11): 1666-1703. DOI:10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2
TAPPONNIER P, MOLNAR P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20): 2905-2930. DOI:10.1029/JB082i020p02905
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
TCHALENKO J S. Similarities between shear zones of different magnitudes[J]. Geological Society of America Bulletin, 1970, 81(6): 1625-1640. DOI:10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2
TCHALENKO J S, AMBRASEYS N N. Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures[J]. Geological Society of America Bulletin, 1970, 81(1): 41-60. DOI:10.1130/0016-7606(1970)81[41:SAOTDB]2.0.CO;2
TEISSERE R F, BECK JR M E. Divergent Cretaceous paleomagnetic pole position for the southern California batholith, U.S.A.[J]. Earth and Planetary Science Letters, 1973, 18(2): 296-300. DOI:10.1016/0012-821X(73)90068-X
TONG H M, FAN C W, TONG C X, et al. Characteristics, types and genetic mechanism of Baodao transfer zone, Qiongdongnan Basin[J]. Oil & Gas Geology, 2015, 36(6): 897-905. (in Chinese with English abstract)
TWISS R J, MOORES E M. Structural geology[M]. New York: W. H. Freeman & Company, 1992: 415.
VINCENT S J, ALLEN M B. Evolution of the Minle and Chaoshui Basins, China: implications for Mesozoic strike-slip basin formation in Central Asia[J]. Geological Society of America Bulletin, 1999, 111(5): 725-742. DOI:10.1130/0016-7606(1999)111<0725:EOTMAC>2.3.CO;2
WAKABAYASHI J. Distribution of displacement on and evolution of a young transform fault system: the northern San Andreas fault system, California[J]. Tectonics, 1999, 18(6): 1245-1274. DOI:10.1029/1999TC900049
WALLACE R E. Structure of a portion of the San Andreas rift in southern California[J]. Geological Society of America Bulletin, 1949, 60(4): 781-806. DOI:10.1130/0016-7606(1949)60[781:SOAPOT]2.0.CO;2
WAN T F, ZHU H, ZHAO L, et al. Formation and evolution of Tancheng-Lujiang fault zone: a review[J]. Geoscience, 1996, 10(2): 159-168. (in Chinese with English abstract)
WANG E. Displacement and timing along the northern strand of the Altyn Tagh fault zone, northern Tibet[J]. Earth and Planetary Science Letters, 1997, 150(1-2): 55-64. DOI:10.1016/S0012-821X(97)00085-X
WANG E, MENG Q R, BURCHFIEL B C, et al. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China[J]. Geology, 2003, 31(4): 307-310. DOI:10.1130/0091-7613(2003)031<0307:MLSLER>2.0.CO;2
WANG X F. The Tanlu fault zone[M]. Beijing: Geological Publishing House, 2000: 12-14. (in Chinese)
WANG Y, ZHANG X, WANG E, et al. 40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau[J]. GSA Bulletin, 2005, 119(9-10): 1336-1346.
WELLMAN H W. The geology between Bruce bay and Haast river, south Westland[J]. New Zealand Geological Survey Bulletin, 1955, 48(2): 46.
WELLMAN H W. Active wrench faults of Iran, Afghanistan and Pakistan[J]. Geologische Rundschau, 1966, 55(3): 716-735. DOI:10.1007/BF02029650
WESNOUSKY S G. Seismological and structural evolution of strike-slip faults[J]. Nature, 1988, 335(6188): 340-343. DOI:10.1038/335340a0
WILCOX R E, HARDING T P, SEELY D R. Basic wrench tectonics[J]. American Association of Petroleum Geologists Bulletin, 1973, 57(1): 74-96.
WILSON J T. A new class of faults and their bearing on continental drift[J]. Nature, 1965, 207(4995): 343-347. DOI:10.1038/207343a0
WOODCOCK N H. The role of strike-slip fault systems at plate boundaries[J]. Philosophical Transactions of the Royal Society A, 1986, 317(1539): 13-29.
WOODCOCK N H, FISCHER M. Strike-slip duplexes[J]. Journal of Structural Geology, 1986, 8(7): 725-735. DOI:10.1016/0191-8141(86)90021-0
WU T, DAI S K, CAO F, et al. Strike-slip fault system and it's controlling on the formation of "reservoir of fault controlling dissolution": a case study of Toufutai area, Tahe oil fields[J]. Advances in Geosciences, 2017, 7(5): 681-694. DOI:10.12677/AG.2017.75069 (in Chinese with English abstract)
XIA Y P, LIU W H, XU L G, et al. Identification of strike-slip fault and its petroleum geology significance[J]. China Petroleum Exploration, 2007, 12(1): 17-23, 48. (in Chinese with English abstract)
XU J W. Some advances in the study of the great horizontal displacement along the northern Tancheng-Lujiang fracture zone[J]. Geological Review, 1985, 6(4): 83-86. (in Chinese with English abstract)
XU J W. Sime major problems on strike-slip faulting[J]. Earth Science Frontiers, 1995, 2(1-2): 125-136. (in Chinese with English abstract)
XU J W, MA G F. Review of ten years (1981-1991) of research on the Tancheng-Lujiang fault zone[J]. Geological Review, 1992, 38(4): 316-324. (in Chinese with English abstract)
XU J W, ZHU G, TONG W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134(4): 273-310. DOI:10.1016/0040-1951(87)90342-8
XU K L, ZHU Z C. Structural geology[M]. 2nd ed. Beijing: Geological Publishing House, 1989: 126. (in Chinese)
XU Z Q, YANG J S, ZHANG J X, et al. A comparison between the tectonic units on the two sides of the Altun sinistral strike-slip fault and the mechanism of lithospheric shearing[J]. Acta Geologica Sinica, 1999, 73(3): 193-205. (in Chinese with English abstract)
YIN A, NIE S Y. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia[J]. Tectonics, 1993, 12(4): 801-813. DOI:10.1029/93TC00313
YIN A, RUMELHART P E, BUTLER R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10): 1257-1295. DOI:10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
YUE Y J, GRAHAM S A, RITTS B D, et al. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault[J]. Tectonophysics, 2005, 406(3-4): 165-178. DOI:10.1016/j.tecto.2005.05.023
YUE Y J, LIOU J G. Two-stage evolution model for the Altyn Tagh fault, China[J]. Geology, 1999, 27(3): 227-230. DOI:10.1130/0091-7613(1999)027<0227:TSEMFT>2.3.CO;2
YUE Y J, RITTS B D, GRAHAM S A. Initiation and long-term slip history of the Altyn Tagh fault[J]. International Geology Review, 2001, 43(12): 1087-1093. DOI:10.1080/00206810109465062
ZHANG J, ZHANG Z, XU Z, et al. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China[J]. Lithos, 2001, 56(2): 187-206.
ZHANG P Z, MOLNAR P, XU X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26(5): TC5010.
ZHANG P Z, SHEN Z K, WANG M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. DOI:10.1130/G20554.1
ZHANG Y Q, DONG S W. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: advances and new understanding[J]. Geological Bulletin of China, 2008, 27(9): 1371-1390. (in Chinese with English abstract)
ZHANG Z M, LIOU J G, COLEMAN R G. An outline of the plate tectonics of China[J]. Geological Society of America Bulletin, 1984, 95(3): 295-312. DOI:10.1130/0016-7606(1984)95<295:AOOTPT>2.0.CO;2
ZHU G, LIU G S, NIU M L, et al. Transcurrent movement and genesis of the Tan-Lu fault zone[J]. Geological Bulletin of China, 2003, 22(3): 200-207. (in Chinese with English abstract)
ZHU G, LIU G S, NIU M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China[J]. International Journal of Earth Sciences, 2009, 98(1): 135-155. DOI:10.1007/s00531-007-0225-8
ZHU G, WANG D X, LIU G S, et al. Extensional activities along the Tan-Lu fault zone and its geodynamic setting[J]. Chinese Journal of Geology, 2001, 6(3): 269-278. (in Chinese with English abstract)
ZHU G, XU Y D, LIU G S, et al. Structural and deformational characteristics of strike-slippings along the middle-southern sector of the Tan-Lu fault zone[J]. Chinese Journal of Geology, 2006, 41(2): 226-241, 255. (in Chinese with English abstract)
ZOBACK M D, ZOBACK M L, MOUNT V S, et al. New evidence on the state of stress of the San Andreas fault system[J]. Science, 1987, 238(4830): 1105-1111. DOI:10.1126/science.238.4830.1105
ZOBACK M L, ZOBACK M. State of stress in the conterminous United States[J]. Journal of Geophysical Research, 1980, 85(B11): 6113-6156. DOI:10.1029/JB085iB11p06113
ZOLNAI G, 1991. Continental wrench-tectonics and hydrocarbon habitat: tectonique continentale en cisaillement[M]//Continuing Education Course Note Series #30. 2nd ed. Tulsa, Oklahoma: American Association of Petroleum Geologists Education Department: 1-2.
陈宣华, 王小凤, 张青, 等. 郯庐断裂带形成演化的年代学研究[J]. 长春科技大学学报, 2000, 30(3): 215-220. DOI:10.3969/j.issn.1671-5888.2000.03.002
陈正乐, 张岳桥, 王小凤, 等. 新生代阿尔金山脉隆升历史的裂变径迹证据[J]. 地球学报, 2001, 22(5): 413-418. DOI:10.3321/j.issn:1006-3021.2001.05.006
陈正乐, 宫红良, 李丽, 等. 阿尔金山脉新生代隆升-剥露过程[J]. 地学前缘, 2006, 13(4): 91-102. DOI:10.3321/j.issn:1005-2321.2006.04.008
房璐, 吴智平, 李伟, 等. 辽东湾坳陷东部地区走滑断裂发育特征及走滑量的估算[J]. 地质力学学报, 2017, 23(3): 459-466. DOI:10.3969/j.issn.1006-6616.2017.03.013
李海兵, 杨经绥, 许志琴, 等. 阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘, 2006, 13(4): 59-79. DOI:10.3321/j.issn:1005-2321.2006.04.006
李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量: 900 km?[J]. 地质通报, 2007, 26(10): 1288-1298. DOI:10.3969/j.issn.1671-2552.2007.10.007
刘和甫. 沉积盆地地球动力学分类及构造样式分析[J]. 地球科学——中国地质大学学报, 1993, 18(6): 699-724.
刘和甫, 夏义平, 殷进垠, 等. 走滑造山带与盆地耦合机制[J]. 地学前缘, 1999, 6(3): 121-132. DOI:10.3321/j.issn:1005-2321.1999.03.012
刘和甫, 李晓清, 刘立群, 等. 走滑构造体系盆山耦合与区带分析[J]. 现代地质, 2004, 18(2): 139-150. DOI:10.3969/j.issn.1000-8527.2004.02.001
刘永江, 葛肖虹, 叶慧文, 等. 晚中生代以来阿尔金断裂的走滑模式[J]. 地球学报, 2001, 22(1): 23-28. DOI:10.3321/j.issn:1006-3021.2001.01.005
陆克政, 朱筱敏, 漆家福. 含油气盆地分析[M]. 东营: 石油大学出版社, 2001: 135-152.
吕宝凤, 吴琼, 杨永强. 塔里木盆地中央隆起带东段"帚状构造"特征及其形成动力学机制[J]. 地质力学学报, 2019, 25(6): 1025-1035.
漆家福, 陈发景. 下辽河-辽东湾新生代裂陷盆地的构造解析[M]. 北京: 地质出版社, 1995: 48.
漆家福, 夏义平, 杨桥. 油区构造解析[M]. 北京: 石油工业出版社, 2006: 95-111.
任收麦, 葛肖虹, 刘永江. 阿尔金断裂带研究进展[J]. 地球科学进展, 2003, 18(3): 386-391. DOI:10.3321/j.issn:1001-8166.2003.03.010
施炜, 张岳桥, 董树文. 郯庐断裂带中段第四纪活动及其分段特征[J]. 地球学报, 2003, 24(1): 11-18. DOI:10.3321/j.issn:1006-3021.2003.01.003
孙晓猛, 王书琴, 王英德, 等. 郯庐断裂带北段构造特征及构造演化序列[J]. 岩石学报, 2010, 26(1): 165-176.
童亨茂, 范彩伟, 童传新, 等. 琼东南盆地宝岛变换带的特征、类型及其成因机制[J]. 石油与天然气地质, 2015, 36(6): 897-905.
万天丰, 朱鸿, 赵磊, 等. 郯庐断裂带的形成与演化:综述[J]. 现代地质, 1996, 10(2): 159-168.
王小凤. 郯庐断裂带[M]. 北京: 地质出版社, 2000: 12-14.
吴涛, 戴少康, 曹飞, 等. 走滑断裂系对碳酸盐岩"断溶体"油藏形成的控制作用:以塔河油田托甫台北为例[J]. 地球科学前沿, 2017, 7(5): 681-694.
夏义平, 刘万辉, 徐礼贵, 等. 走滑断层的识别标志及其石油地质意义[J]. 中国石油勘探, 2007, 12(1): 17-23, 48. DOI:10.3969/j.issn.1672-7703.2007.01.004
徐嘉炜. 郯-庐断裂带北段巨大平移研究的若干进展[J]. 地质论评, 1985, 6(4): 83-86.
徐嘉炜, 马国锋. 郯庐断裂带研究的十年回顾[J]. 地质论评, 1992, 38(4): 316-324. DOI:10.3321/j.issn:0371-5736.1992.04.004
徐嘉炜. 论走滑断层作用的几个主要问题[J]. 地学前缘, 1995, 2(1-2): 125-136.
徐开礼, 朱志澄. 构造地质学[M]. 2版. 北京: 地质出版社, 1989: 126.
许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999, 73(3): 193-205. DOI:10.3321/j.issn:0001-5717.1999.03.001
张岳桥, 董树文. 郯庐断裂带中生代构造演化史:进展与新认识[J]. 地质通报, 2008, 27(9): 1371-1390. DOI:10.3969/j.issn.1671-2552.2008.09.002
朱光, 王道轩, 刘国生, 等. 郯庐断裂带的伸展活动及其动力学背景[J]. 地质科学, 2001, 36(3): 269-278. DOI:10.3321/j.issn:0563-5020.2001.03.002
朱光, 刘国生, 牛漫兰, 等. 郯庐断裂带的平移运动与成因[J]. 地质通报, 2003, 22(3): 200-207. DOI:10.3969/j.issn.1671-2552.2003.03.009
朱光, 徐佑德, 刘国生, 等. 郯庐断裂带中-南段走滑构造特征与变形规律[J]. 地质科学, 2006, 41(2): 226-241, 255. DOI:10.3321/j.issn:0563-5020.2006.02.006